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Abstract  
Reading texts on low-resolution images is difficult. The low-resolution text-based images are usually 

produced due to the bad performance of the old camera or the target object captured on the image is far from 
the camera. A various number of methods to improve low-resolution image to high-resolution have been 
proposed. This problem is also known as Single-Image Super-Resolution (SISR). The SISR methods have 
been developed from mathematical and statistical methods to machine learning and deep-learning-based 
methods. The tool to general users trying to use SISR methods, especially targets to up-sample text-based 
images, is the project's main objective. Therefore, 12 SISR methods are assessed, and the Graphical User 
Interface is built in this project. The SISR methods up-sample four image sets with scaling factor of 2, 3, 4 
and 8. The up-sampled images are compared with ground-truth images by using four image quality 
assessment methods. The benchmark emphasis that 'ICBI' is the dominating method to up-sample the low-
resolution image in the experimenting condition with scaling factor of 2, 4 and 8. For the experiment setting 
with a scaling factor of 3, as 'ICBI' was not available to process, 'EDSR' and 'ESPCN' showed the best 
performing. The GUI is then developed by taking the code used for benchmark as backend, and the codes are 
wired into front-end code and user interface. Although the benchmark result showed that 'ICBI' is the best 
performing SISR method, the up-sampled image had some artefacts and wiggly lines compare to other 
methods. The reason for this issue and the limitation of image quality assessment methods are dealt on the 
discussion. Finally, this project is concluded by addressing future research related to the limitation and 
problems. 
Index Terms—Image Processing, Image analysis, Image quality, High-resolution imaging, benchmark 
 

I. INTRODUCTION1 

Image magnification is typical action in various 
devices, mostly done on small portable devices 
such as smartphones and tablet PCs. The sampling 
resolution of the electronic devices is not high 
enough for users to enlarge the captured image, 
especially when the device is the old model. 
Furthermore, the image's content which is 
captured from the past with a low-resolution 
camera is difficult to understand. Therefore, the 
technique to improve the image's resolution is 
researched by estimating the unknown pixels 
between known pixels. This technique becomes a 
significant computer vision problem in various 
application fields [1], [2] such as medical image 

 
1 The code implementation of this project is available at: 

https://github.com/ArtemisDicoTiar/sisr_project. All images resulted from 

capturing [3]–[6], optical devices for biology [7]–
[9], object recognition/detection for general 
purpose and surveillance/security purpose [10]–
[14], amongst others.  

 
The technique is called super-resolution (SR), 

which predicts the high-resolution (HR) image 
from a combination of the low-resolution (LR) 
images. The SR method can be visualized as 
Figure I-1, which is an example that used a scaling 
factor of 2. Each box on Figure I-1 represents a 
pixel from image, and the value in the box 
illustrates the colour value using RGB scale (R: 
Red, G: Green, B: Blue). The RGB values are 
limited in the range of 0~255. ‘0’ means none of 
the colour is included to the pixel (black) while 

this project is on the separate Github repository: 
https://github.com/ArtemisDicoTiar/SISRProjectImage. 

Jongyoon Kim, University of Bristol 
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255 means the colour is fully applied to the pixel. 
The SR method takes the pixel values as a matrix: 
Equation (I-1). However, some SR methods trying 
to normalise the pixel’s RGB scale into 0~1 to 
make the calculation during SR process simpler as 
multiplication of values below 1 will make the 
value smaller while 0~255 scale does not. The 
pixel value using 0~1 scale can be illustrated as 
Figure I-2, and the SR method will use the pixel 
value as matrix written in Equation (I-2. 

 
Figure I-1: Diagram for super-Resolution method basic 
understanding 

 

!
[93 243 178] [24 71 51]
[18 67 46] [0 0 0] . 

(I-1) 

 
Figure I-2: Diagram of the pixel from an image using 0~1 scale of 
RGB 

 

!
[0.365 0.953 0.698] [0.094 0.278 0.2]
[0.071 0.263 0.18] [0 0 0] . 

(I-2) 

There are various classical SR methods 
proposed in the computer vision community. 
Interpolation methods are proposed on early stage, 
includes bicubic interpolation [15], [16],  Lanczos 
[17]. Other classical strategies are sparse 
representation methods [18], [19], example-based 
methods [20], [21], patch-based methods [21]–
[23], edge-based methods [24], [25] and 
combination of other methods [26]. 

 
In addition to classical methods, the application 

of machine learning and deep learning to the field 
of computer vision leads to significant 
performance improvement where the classical 
methods come to a dead end as the classical 
methods use more complex mathematical equation 
which increased processing time and memory 
usage. For better efficiency of the SR method, 
direct end-to-end mapping with interpolated LR 
and HR images with Convolutional Neural 
Network (CNN) was proposed, called SRCNN 
[27]. Starting from SRCNN, other CNN methods 
such as Fast SRCNN (FSRCNN) [28], Deeply 
Recursive CNN (DRCNN) [29], Very Deep 
Convolutional Networks (VDSR) [30] and 
Efficient Sub-Pixel Convolutional Networks 
(ESPCN) [31] are proposed for shorter processing 
time and better up-sampled images. The deep 
learning model design can be differed by model 
frameworks, up-sampling methods, network 
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design, and learning strategies [32]. Most recent 
models use enhanced model designs and result in 
better performances, such as Super-Resolution 
Generative Adversarial Network (SRGAN) [33] 
and Content Adaptive Re-sampler (CAR) [34]. 

 
In this project, a comprehensive overview of 

various Single-Image Super-Resolution (SISR) 
methods will be given. There are SR surveys 
already done by others [32], [35]–[39], but this 
project is going to focus on the performance of the 
SR method on text-based images such as scanned 
images, images taken by mobile devices. The 
importance of up-sampling text-based images is 
due to the recognition either by human or machine. 
The text recognition and detection technologies 
challenge detecting characters from LR images 
that may have issues of blurry, degraded, and 
distorted pixels [40], [41]. Therefore, text-based 
images will be used for the dataset of the 
benchmark. Furthermore, the methods will also be 
assessed with general condition images and 
images with patterns to compare the performance 
with different input images.  

The detailed contents of this project are outlined 
in the following. The SISR methods used for this 
project is illustrated in Section II, including a 
general explanation about each category of SISR 
methods. The way of how up-sampled image 
assessed is illustrated in Section III. The 
benchmark-setting and project implementation is 
then described in Section IV. This section includes 
benchmark pseudo-code and GUI pseudo code. 
Lastly, illustrating the benchmark result and 
limitation of the project concludes the paper 
(Section V - VII). 

II. SINGLE-IMAGE SUPER-RESOLUTION METHODS 

A. Interpolation methods 
Interpolation is a function that satisfying 

following equation (II-1) for given image 𝑣 where 
𝑣!,# represents uniformly sampled pixels. 

 
𝑣!,# = 𝑢(𝑚, 𝑛) for all 𝑚, 𝑛	 ∈ 	ℤ(𝐼𝑛𝑡𝑒𝑔𝑒𝑟)                                    

(II-1) 

There are three commonly used interpolation 
methods, Nearest Neighbour, Bilinear and 

Bicubic interpolation. The graphical view of the 
three interpolation methods is described in Figure 
II-1 [16]. 

 
Figure II-1: Linear Image Interpolation methods applied to 
uniformly spaced input data [16] 

Because basic interpolation algorithms are 
commonly used as a baseline to compare another 
method, this project selected four interpolation 
algorithms which are going to be described 
below. 

 
Nearest Neighbor Interpolation  

The Nearest Neighbour (NN) interpolation is 
the simplest interpolation method. The 
interpolated pixel is a duplication of the nearest 
pixel. From the Figure II-2, unknown pixel (u, v) 
can be estimated by comparing the distance 
between nearby known pixels, (i, j), (i+1, j), (i, 
j+1) and (i+1, j+1). The nearest known pixel is (i, 
j), so the unknown target pixel (u,v) will take the 
value same as (i, j) [42]. The explained method 
can be written as Equation (II-2), where [k] 
results round to nearest integer from k. 

 
Figure II-2: Diagram of nearest neighbor interpolation algorithm 
[16] 

𝑝$#%#&'#(𝑢, 𝑣) = 	𝑝%#&'#([𝑢], [𝑣])                               
(II-2) 

 
Bilinear Interpolation 

The bilinear interpolation processes like nearest 
neighbour interpolation, but it uses a linear 
function to estimate the unknown pixel value. 
From Figure II-3, A, B, C and D pixels are set a 
known pixel and the values are (i, j), (i+1, j), (i, 
j+1) and (i+1, j+1). To estimate the value of 
unknown pixel P, pixel E and F should be 
estimated by applying linear function with known 
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pixel values on the same rows as a primary stage. 
Then, pixel P can be calculated by applying a 
linear function with estimated pixel E and F. The 
explained processes can be illustrated using 
Equation (II-3) - (II-5) [42]. 

 
Figure II-3: Diagram of bilinear interpolation algorithm [42] 

𝑓(𝐸) = 𝑓(𝑖 + 𝑣, 𝑗) 
											= {𝑓(𝐵) − 𝑓(𝐴)} ∗ 𝑣 + 𝑓(𝐴) 
											= {𝑓(𝑖 + 1, 𝑗) − 𝑓(𝑖, 𝑗)}𝑣 + 𝑓(𝑖, 𝑗)    

(II-3) 

𝑓(𝐹) = 𝑓(𝑖 + 𝑣, 𝑗 + 1) 
											= {𝑓(𝐷) − 𝑓(𝐶)} ∗ 𝑣 + 𝑓(𝐶)	
											= {𝑓(𝑖 + 1, 𝑗 + 1) − 𝑓(𝑖, 𝑗 + 1)}𝑣 + 𝑓(𝑖, 𝑗 + 1)	 

(II-4) 

𝑓(𝑃) = 𝑓(𝑖 + 𝑣, 𝑗 + 𝑢) 
											= {𝑓(𝐹) − 𝑓(𝐸)} ∗ 𝑢 + 𝑓(𝐸)	
											= (1 − 𝑢)𝑓(𝐸) + 𝑢𝑓(𝐹)	
											= (1 − 𝑢)(1 − 𝑣)𝑓(𝑖, 𝑗) − (1 − 𝑢)𝑣𝑓(𝑖 + 1, 𝑗)

+ 𝑢(1 − 𝑣)𝑓(𝑖, 𝑗 + 1)	
																																	+𝑢𝑣𝑓(𝑖 + 1, 𝑗 + 1) 

(II-5) 

Because the calculation assumes that the target 
pixel lies on the linear relationship between 
nearby two pixels, the method is called bilinear 
interpolation. 
 
Bicubic Interpolation 
 Bicubic interpolation is similar to bilinear 
interpolation, but it refers 16 nearby known 
pixels, unlike bilinear, which uses four nearby 
known pixels. The unknown pixel (u,v) on Figure 
II-4 can be estimated by a similar process done on 
bilinear interpolation but use bicubic estimation 
to four pixels. The estimation of a pixel on (u,v) 
involves nearby pixels to be also estimated. For 
this case, it should estimate pixel having x-axis 
value of 'u' from all rows. With the two pixel 
values, the target pixel (u,v) can be estimated 
using the estimated pixels with the x-axis value, 
'u'. The way of estimating the pixel value follows 
Figure II-5, but it uses cubic estimation [42].  

 
Figure II-4: Bicubic interpolation algorithm diagram [42] 

 

Figure II-5: nonlinear interpolation algorithm diagram [42] 

Because the influence of each known pixel is 
stronger than bilinear interpolation, the estimated 
unknown pixel gets value more natural to nearby 
pixel values (Figure II-1). Furthermore, the 
bicubic interpolation kernel is smoother than 
bilinear interpolation, so the up-sampled image 
shows a smoother edge [16]. 
 
Lanczos Interpolation 

Lanczos interpolation uses kernel written on 
Equation (II-6) and (II-7) [43]. The Lanczos 
kernel, which is windowed sinc function, is 
applied to estimate the unknown pixel value with 
few pixels. When 2nd order is chosen then, 16 
nearby pixels are used to estimate unknown pixel 
and 3rd order selection make 36 neighbour pixels 
are used to calculate unknown pixel value. The 
high order leads to refer more pixels, the 
computation time increases as more addition and 
multiplication with sin function is applied then 
other interpolation methods[44], [45]. 

𝐿𝑎𝑛𝑐𝑧𝑜𝑠!(𝑥) =

⎩
⎨

⎧sin(𝜋𝑥)
𝜋𝑥

sin G𝜋𝑥2 I
𝜋𝑥
2

, |𝑥| < 2

0, |𝑥| ≥ 2

 

(II-6) 

𝐿𝑎𝑛𝑐𝑧𝑜𝑠"(𝑥) =

⎩
⎨

⎧sin(𝜋𝑥)
𝜋𝑥

sin G𝜋𝑥3 I
𝜋𝑥
3

, |𝑥| < 3

0, |𝑥| ≥ 3

 

(II-7) 
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Interpolation performance overall expectation 
According to [42], the subjective evaluation of 

the nearest neighbour comments that the up-
sampled pixel looks like a mosaic, bilinear is 
blurry and not sharp and bicubic looks fuzzy but 
sharper. Besides, the contour of the image is 
unclear for both the Nearest neighbour and 
bilinear interpolation. The bilinear interpolation 
methods are assessed as having a serrate edge. 
The bicubic is the most improved interpolation 
compare to the other two methods. The mean of 
SNRs from 10 result image from three 
interpolation methods shows that Bicubic shows 
the highest value. In contrast, the Nearest 
neighbour shows the lowest value, which means 
that bicubic shows the best performance. 
 
B. Deep-learning methods 

Deep learning methods are selected for the 
project as the methods are the state-of-the-art 
technique in SISR research fields. The reason for 
each method selection is described at the end of 
each method description. 

 
Fast Super-Resolution Convolutional Neural 
Network (FSRCNN) 

The FSRCNN is an enhanced model of 
SRCNN, which has faster runtime and better 
PSNR (PSNR is described in Section III.B). 
Therefore, to understand FSRCNN, reviewing 
SRCNN is necessary. 
 The SRCNN is done by four steps illustrated in 
Figure II-6 [46]. Primarily, bicubic interpolation 
is applied to LR image to achieve desired 
resolution as pre-processing, which is not 
described in Figure II-6. With the interpolated 
image, 9*9 convolution is applied to the image 
for patch extraction from LR image and each 
patch is represented as a high-dimensional vector. 
The vector is comprehended as feature maps. The 
feature maps are now mapped to other feature 
maps non-linearly using 1*1 convolution. The 
non-linearly mapped feature maps are then 
connected to the HR image by reconstruction 
process patch-wise with 5*5 convolution layer.  

The SRCNN showed better performance than 
the A+ algorithm by about 0.2dB, KK algorithm 
by 0.3dB and NE+LLE algorithm by 0.7dB [46]. 
The running time is faster than the A+ algorithm 
when 9*9, 1*1 and 5*5 convolution is used for 
each step, respectively. However, when the 
convolution filter size increased from 1*1 to 3*3 
or 5*5, the running time gets slower than the A+ 
algorithm as feature maps mapping requires more 
computation processes. 
 Even though SRCNN showed better 
performance than traditional hand-crafted 
statistical methods, the time complexity of the 
SRCNN becomes high when the size of the target 
HR image increases, as the time complexity is 
illustrated in Equation (II-8). According to 
Equation (II-8), 'f' means the size of the filter, 'n' 
means the number of filters, and S_HR refers to 
the size of the HR image. Therefore, FSRCNN is 
proposed to achieve a faster processing speed 
[28].  
 
𝑂{(𝑓()𝑛( + 𝑛(𝑓))𝑛) + 𝑛)𝑓*))𝑆+,}  

(II-8) 

 The FSRCNN is modified from SRCNN with 
three characteristics. A deconvolution layer is 
implemented at the last stage of the network. 
Furthermore, the image does not have to be 
interpolated at the first stage so that the HR image 
can be learned from the LR image. Besides, the 
structure of the mapping layer has been changed 
as reducing input feature dimension before 
mapping and increase the feature dimension as 
before reducing. This process sets to be repeated 
'm' times to control the accuracy and complexity 
of the mapping stage. Lastly, filter size has been 
scaled down, whereas the number of mapping 
layers has been increased. The overall process is 
illustrated in Figure II-7, which also shows the 
difference between SRCNN and FSRCNN. 
 
 The SRCNN was targeted for this project, but 
the processing time was longer than expected, so 
FSRCNN is chosen to secure more computing 
time for other methods and image quality 
analysis.
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Figure II-6:Diagram of SRCNN process [46] 

Very Deep convolutional network (VDSR) 
Increasing the depth of the convolutional 

network improves the accuracy of image 
recognition on a large scale [47]. Therefore, Kim 
et al. [30] tried to implement a very deep 
convolutional network for the SR problem, so 
their final model uses 20 weight layers. The 
VDSR model architecture is illustrated in Figure 
II-8. The LR image is interpolated, and the image 
is used as input of the network. While proceeding 
the interpolation step, any interpolation can be 
used. Therefore, four interpolation methods 
illustrated in section II.A will be applied before 
VDSR in this project. The interpolated image is 
then processed on cascaded convolution layers, 
and ReLu layers 'D-1' times and 'D'th convolution 
layer result will be added to the interpolated 
image. The convolution and ReLu layers use 

residual information of the image and it is added 
to interpolated image on the last stage. They used 
residual information for model learning because it 
converges faster than the standard CNN structure. 
Also, CNN uses residual information to show 
better performance. By comparing residual 
learning and standard learning with the same 
epochs, the PSNR difference is about 9.5 dB after 
ten epochs with various initial learning rate, 0.1, 
0.01 and 0.001.  

Furthermore, the convergence of residual 
learning is smoother and more stable than 
standard learning[30]. Lastly, the residual 
learning also led to faster runtime even though 
the convolution layer increased compared to 
SRCNN. The PSNR of VDSR is higher than 
SRCNN by about 0.9dB. 

 
Figure II-7: Diagram of comparison between SRCNN and FSRCNN (Conv: convolution layer) [28] 
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Figure II-8: Diagram of VDSR network structure [30]   

 The VDSR is the next state-of-the-art model for 
SISR after SRCNN, so the VDSR is selected for 
this project. Moreover, it is meaningful to see this 
deeper CNN structure that uses residual 
information also shows good performance for 
text-based images. 
 
Deeply Recursive Convolutional (Neural) 
Network (DRC(N)N) 

The same author of VDSR has proposed the 
DRCN, but the method they used for SR was 
different. The network uses a recursive layer, 
which repeats the same filter and feature map, for 
simplicity of the model parameter even the depth 
is increased due to additional convolution layers. 
The DRCN's network is consists of three sub-
networks: embedding, inference and 

reconstruction networks (illustrated in Figure 
II-9). The embedding network takes interpolated 
LR image and converts it into a set of feature 
maps. Then this set of feature maps are passed to 
the inference network. The inference network is 
constructed with recursion of a convolution layer, 
ReLU layer and mapping layer. After the 
inference network, the output feature maps are 
transformed into the original image space, which 
results in an HR image. The recursive model is 
simple but powerful to implement. However, 
training a deep recursive network is difficult 
because of the vanishing gradient problem. 
Therefore, Kim et al. [29] applied two technique 
to solve this issue: recursive-supervision and 
skip-connection.

 
Figure II-9: Diagram of DRCN model structure [29] 
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Figure II-10: Diagram of DRCN with recursive-supervision and skip-connection [29] 

The reconstruction network takes feature maps 
from the inference network, which means feature 
maps from any recursion step can be passed. 
Therefore, interim feature maps for each 
recursion are also passed to the reconstruction 
network for the reconstruction process. This 
results in the final output to be a summation of 
each feature maps multiplied by weight for each 
map written as Equation (II-9). This ensemble 
improves performance by opposing the effect of 
vanishing/exploding gradients as one 
backpropagation path is reduced. Furthermore, 
the significance of choosing the optimal number 
for recursion is reduced because when the 
recursions are too deep for the image, the weight 
for deeper recursion will become smaller. 

𝑦 = 	H𝑤- ∗ 𝑦K-

.

-/(

 

(II-9) 

Also, skip connection is added to the 
reconstruction network, as illustrated in Figure 
II-10. The network's capacity can be saved for 
storing result feature maps of every recursion 
from the inference network. Also, the exact copy 
of the feature map can be used to predict the 
reconstruction network. This can be done as LR 
image and HR image does not have a 
considerable difference, which means most pixels 
will have similar value. This understanding will 

improve the performance of the learning process. 
Therefore, the vanishing gradients problem will 
be solved.   

The DRCN model is selected for this project to 
evaluate how a recursive network works for text-
based images, even with deep layers like VDSR. 

 
Efficient Sub-Pixel Convolutional Neural network 
(ESPCN) 

The ESPCN model is the first model that uses 
LR image space as input of the model instead of 
using an interpolated image which is HR image 
space. The model also uses CNN structure to 
process SR. The efficient sub-pixel convolution 
layer is introduced to the network structure. As 
interpolating the LR image to HR image space 
can be replaced into the complex filter that can be 
trained for each feature maps, the computation 
complexity is reduced, and the performance of 
the SR is improved. According to Shi et al. [31], 
the ESPCN showed 0.15dB PSNR improvement 
for images and 0.39dB PSNR improvement for 
videos.  

The efficient sub-pixel convolution neural 
network is constructed as illustrated in Figure 
II-11. The sub-pixel convolution process is done 
on the hidden layer for 'L' times with fl*fl 
convolution filters on the 'L-1'th layer. On the last 
layer, the feature map is used to reconstruct the 
HR image output. 
 

 
Figure II-11: Diagram of ESPCN network [31] 
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The ESPCN model is selected to compare the 
performance difference between the model that 
uses interpolated LR image for model input and 
ESPCN, which directly takes LR image as input. 
The interpolation process before applying to the 
model can lose the edge information during 
interpolation. Therefore, the ESPCN model is 
listed on the benchmark target models. 

 
Laplacian Pyramid Super-Resolution Network 
(LapSRN) 

There are few problems with formerly designed 
SR models. The ESPCN applies bicubic 
interpolation before main process of the model, 
which causes an increase in computational cost. 
In addition, it does not provide high-frequency 
information to the reconstruction stage. Besides, 
the previous models use L2-loss for model 
optimisation. The L2-loss (also known as Mean-
Square Error) is challenging to pass multi-model 
distribution of HR patches, and an identical LR 
patch may result in diver HR patches. Therefore, 
L2 loss causes over-smoothed and inconsistent 
human visual perception on reconstructed HR 
image. Lastly, previous models had one stage for 
up-sampling to HR image. As only one step is 
applied for up-sampling, up-sampling the image 
with a significant scale factor makes the learning 
process for the mapping function difficult. To 
solve these issues, LapSRN is proposed [48]. 

The LapSRN primarily applied progressive up-
sampling with residual information from each 
process stage for reconstructing the image. As the 
up-sampling process is done by the power of two, 
the target up-sampling scale factor is available for 
2, 4 and 8. The model directly extracts features 
from the LR image instead of applying 
interpolation as pre-process. This reduces 
computation power similar to ESPCN.   

The name of LapSRN originated from the use 
of the Laplacian Pyramid for the feature 
extraction branch, as described in Figure II-12. 
The Laplacian Pyramid is an encoding process 
that samples the image with Laplacian operators. 
Therefore, it can encode outstanding image 
features, and so it is applicable to image analysis 
processes [49].  

The feature extraction branch is structured with 
multiple levels of construction layers and one 
deconvolution layer. The deconvolution layer on 

each level outputs to the next level's convolution 
layer and reconstruction branch for summing the 
residual information with it. The feature maps 
from lower levels are shared with higher levels, 
so the network's non-linearity can be increased, 
and the network can learn more complex 
mapping. 

The other branch, the image reconstruction 
branch, up-samples the image by the scale of 2 
with a deconvolution layer. Then the resulting 
image is combined with the residual image from 
the feature extraction branch. 

 
Figure II-12: Diagram of LapSRN structure that consists of 
feature extraction branch and image reconstruction branch [48] 

 The text-based images demand to have more 
precise edge information when the image is up-
sampled. However, the previously explained 
models have only one stage for up-sampling 
contrast to feature extraction branch of LapSRN, 
which has multiple stages. This can cause loss of 
edge information, so this model is selected for the 
project to be benchmarked. 
 
Enhanced Deep Residual Network (EDSR) 
 The EDSR model is the most recent model used 
for this project. This model based on SRResNet 
to solve the SR problem, but optimised network 
architecture is used for EDSR by analysing the 
ResNet and removing unnecessary parts from 
ResNet[50]. Primarily, the architecture of EDSR 
is illustrated in Figure II-13. The LR image is 
entered into the convolution layer and then a few 
numbers of residual blocks. The convolution 
layer is applied after the last residual block. The 
image after the last convolution layer is summed 
with the initial image that passed the first 
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convolution layer as residual information is 
handled on residual blocks. In the last stage, up-
sampling is processed by deconvolution layers. 

 
Figure II-13: Diagram of EDSR architecture [50] 

The critical point of this model is that although 
the EDSR method based on SRRestnet, the 
residual block has been optimised by removing 
the convolution layer and batch normalisation 
(BN) layer. As the batch normalisation process 
normalises the feature, removing it can give more 
flexibility to the network. Also, this optimisation 
led to performance increase and memory usage 
reduction. 

 
Figure II-14: Comparison of residual blocks between original, 
SRResNet and EDSR (from left to right) [50] 

This model is selected for the project to see the 
residual network's performance when applied for 
text-based images. Because the residual network 
is effectively used to avoid vanishing or 
exploding gradient problem, the model can show 
better performance than others. Besides, a deep-
learning SR survey paper by Yang et al [35], 
reported that EDSR showed the best performance 
as 32.62 dB (PSNR). Therefore, the EDSR is 
selected to benchmark for text-based images. 

C. Edge-preserving methods 
This section describes the methods that use 

hand-crafted features, unlike deep-learning 
models. The hand-crafted up-sampling methods 
targeted to find a better interpolation method and 
correct the interpolated pixel to better value with 
the objective function. Because the hand-crafted 
features/methods must be built by human 
intuition, it can miss some significant features of 
the image or trifle feature that results in a 
significant difference in the performance. 
However, the hand-crafted features are usually 
built with mathematical equations for a specific 
purpose. This means the method can show good 
result for specific condition. For this project, the 
methods that understand the edge of the character 
is needed. Therefore, edge-preserving hand-
crafted methods are included for this project. 

 
Improved New Edge-Directed Interpolation 
(iNEDI) 

The up-sampling methods that preserve edge 
features have been proposed, but they had 
instability and computational difficulty. The 
iNEDI method improved from NEDI, which used 
bilinear interpolation and adaptive interpolation 
to perform better than linear interpolation. 
Simultaneously, it reduces the computational 
complexity of the covariance-based adaptive 
interpolation method [51]. The iNEDI was 
proposed to solve the following limitation from 
NEDI [52].  

The use of squared window produced 
directional artefacts and made the algorithm non-
isotropic, so iNEDI replaced with an 
approximately circular window to reduce the side 
effects.   

The NEDI method uses coefficients that need to 
be calculated even the covariance is unchanging, 
which will lead to a bad solution from small 
error. Although this issue has been solved from 
the NEDI using bilinear interpolation for the 
similar local grey level variation above the 
threshold value, iNEDI proposed to use bicubic 
interpolation. This cannot improve the 
performance when grey-scale variation below 
threshold value. However, it can have better 
accuracy and edge direction preservation. 

The significant problem of NEDI is how to 
make the window used for pixel value estimation 
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to be on the almost identical edge. This is the 
most important problem because when the 
window does not follow the edge, it can cause the 
predicted pixel to have a strange value compared 
to nearby pixels, as illustrated in Figure II-15. 
This is the case when having a more vital 
constant covariance constraint. This issue can be 
solved by growing region that observes neighbour 
pixels. This process is called edge 
“segmentation”. 

 

 
Figure II-15: Example of 1D interpolation showing wrong 
covariance interpolation result (Black pixel is predicted pixel and 
blues are obtained from a weighted sum of two neighbour pixels) 
[52] 

While removing deficient regions, the over-
constrained system can cause a significant error 
of interpolated element vector from a small error 
in input. This issue is solved in iNEDI, by adding 
a constant value to the grayscale to make the 
value to be away from zero.  

The final problem from NEDI is that the 
interpolated pixel gets a changed value for global 
brightness, which means the interpolated value 
also considers the difference between global 
absolute values. This problem has been solved by 
applying subtraction of the average of the four 
neighbour intensities instead of NEDI constraint. 

The iNEDI does not show dramatic 
improvement assessed by PSNR where it has a 
similar value compare to bicubic interpolation. 
However, the image showed a more precise 
contour, and this leads to the best qualitative 
assessment having an average value of 3.82/5, 
where bicubic achieve 2.64/5. Therefore, this 
method is selected for this project which is 
expected to have good performance to preserve 
the edge of text objects. 
 
 

Interactive Curvature Based Interpolation (ICBI) 
 The ICBI method is proposed by Reddy et al. 
[53] to improve the performance of the up-
sampling method by using two-step grid filling 
and iterative correction of interpolated pixels. The 
pixel correction has been done by obtaining 
minimum value from an objective function that 
refers a second-order directional derivatives of 
image intensity.   
 The two steps grid filling is processed with the 
FCBI algorithm with initialised new values. 
Primarily, two diagonal directions are calculated 
using eight neighbour pixel values. The second-
order derivatives I11(2i+1, 2j+1) and I22(2i+1, 
2j+1) can be calculated by Equation (II-10) and 
(II-11) it is illustrated as a graphical explanation 
in Figure II-16. Then, the average of the two 
neighbours in the direction is assigned to the 
point described in Equation (II-12). 

 
Figure II-16: Diagram of FCBI algorithm, estimating unknown 
black pixel. [53] 

𝐼P##(2𝑖 + 1, 2𝑗 + 1) = 𝐼(2𝑖 − 2, 2𝑗 + 2) + 𝐼(2𝑖, 2𝑗) +
𝐼(2𝑖 + 2, 2𝑗 − 2) + 2(2𝑖, 2𝑗 + 4) + 𝐼(2𝑖 + 2, 2𝑗 +
2) + 𝐼(2𝑖 + 4, 2𝑗) − 3𝐼(2𝑖, 2𝑗 + 2) − 3𝐼(2𝑖 + 2, 2𝑗)  

(II-10) 

𝐼P!!(2𝑖 + 1, 2𝑗 + 1) = 𝐼(2𝑖, 2𝑗 − 2) + 𝐼(2𝑖 + 2,2𝑗) +
𝐼(2𝑖 + 4, 2𝑗 + 2) + 𝐼(2𝑖 − 2,2𝑗) + 𝐼(2𝑖, 2𝑗 + 2) +
𝐼(2𝑖 + 2,2𝑗 + 4) − 3𝐼(2𝑖, 2𝑗) − 3𝐼(2𝑖 + 2,2𝑗 + 2)  

(II-11) 

 

L

𝐼(2𝑖, 2𝑗) + 𝐼(2𝑖 + 2, 2𝑗 + 2)
2

, 𝑖𝑓	𝐼O(( <	 𝐼O))
𝐼(2𝑖 + 2,2𝑗) + 𝐼(2𝑖, 2𝑗 + 2)

2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(II-12) 

The interpolated values are retouched by the 
iterative procedure, which targets making the 
“energy” function obtain minimum. The function 
is given by combining each interpolated pixel 
with a different weight which depends on the 
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local continuity of the second-order derivatives. 
The function components are desired to have 
minima when the desired image properties are 
achieved. However, computing this procedure to 
every pixel requires a higher computational cost. 
Therefore, ICBI proposes to apply a greedy 
strategy just for calculating the local minimum of 
every pixel, which will be used as a reasonable 
initial value to iterate the procedure with a shorter 
processing time.  

The objective function, which is the “energy” 
function for this method, should be minimised. 
The first interpolation step can result in the 
energy function as Equation (II-13). The weights 
(‘omega’ on Equation (II-13)) are set to 1 if the 
first-order derivative in the same direction is 
smaller than the threshold value and 0 otherwise. 
This method will lead to an image not having 
smoothness when there is a massive discontinuity 
between pixels. Therefore, this term is called 
“curvature smoothing”, and the name of this 
algorithm to be ICBI. The optimisation process of 
minimising the sum of the “curvature smoothing” 
term removes artefacts effectively, but it can lead 
to an over-smoothed image. By converting the 
second-order derivative estimation as actual 
directional curvature, the curvature smoothing 
effect can be reduced. 
𝑈$(2𝑖 + 1, 2𝑗 + 1) 
= 𝜔#(|𝐼##(2𝑖, 2𝑗) − 𝐼##(2𝑖 + 1,2𝑗 + 1)|

+ |𝐼!!(2𝑖, 2𝑗) − 𝐼!!(2𝑖 + 1,2𝑗 + 1)|) 
	
+𝜔!(|𝐼##(2𝑖, 2𝑗) − 𝐼##(2𝑖 + 1,2𝑗 + 1)|

+ |𝐼!!(2𝑖, 2𝑗) − 𝐼!!(2𝑖 + 1,2𝑗 + 1)|) 
	

+𝜔"(|𝐼##(2𝑖, 2𝑗) − 𝐼##(2𝑖 + 1,2𝑗 + 1)| +
|𝐼!!(2𝑖, 2𝑗) − 𝐼!!(2𝑖 + 1,2𝑗 + 1)|) 

	
+𝜔%(|𝐼##(2𝑖, 2𝑗) − 𝐼##(2𝑖 + 1,2𝑗 + 1)| +
|𝐼!!(2𝑖, 2𝑗) − 𝐼!!(2𝑖 + 1,2𝑗 + 1)|) 

(II-13) 

According to Giachetti and Asuni [54], the ICBI 
showed +0.71 dB and +0.42 dB of PSNR for a 
scale factor of 2 and 4, respectively. Besides, as 
this method effectively makes the edge clearer, 
which is the vital functionality to up-sample the 
text-based images, the ICBI is chosen for this 
project to be assessed. 

III. IMAGE QUALITY ASSESSMENT 

While the image up-sampling and predicting 
methods have been developed and researched, 
evaluating the resulting image from the methods 
has been designed in various strategies, usually 
with statistical analysis. The image quality 
analysis methods are categorised into two, 
subjective image quality assessments and 
objective image quality assessments [55]. 
A. Subjective Image Quality Assessments 

The subjective assessment focuses more on 
human perception than numerical analysis. This 
assessment is done by taking a survey about the 
images, including up-sampled images with 
various methods. Because this SR technology is 
developed to have better visual understanding 
from low-resolution images for human, it is 
crucial to have the perception of human for 
assessing the up-sampling methods. However, 
this assessment requires several people to assess, 
the cost and time requirement is high. Therefore, 
this subjective assessment has been dropped for 
this project. Furthermore, some IQA methods are 
found that the methods tried to have a high 
correlation between subjective assessment and 
numerical analysis during the literature review. 
By using the method, the project can have 
perspective of how human evaluate the up-
sampled images, indirectly. 

 
B. Objective Image Quality Assessments 
Peak Signal-to-Noise Ratio (PSNR)[55] 

The PSNR is the most used objective metric for 
image quality analysis. This metric is 
straightforward and convenient to use. However, 
when this metric is developed, human visual 
system was not considered. Therefore, PSNR 
cannot correlate highly with human visual 
perception. The more excellent PSNR value 
represents a higher similarity between the up-
sampled image and the original image based on 
the equation derived. The value of PSNR is 
calculated by comparing pixel by pixel and not 
trying to understand the structure of the image. 
This is the reason why it cannot highly correlate 
with the human visual perception. Even though 
the image with high PSNR can look weird, this 
can be a good numerical value to assess the up-
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sampling method, which evaluates the similarity 
between the original and up-sampled image. The 
equation describing the PSNR is written on 
Equation (III-1). 

 
𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔(0𝑀𝐴𝑋12343#56 − 10 𝑙𝑜𝑔(0𝑀𝑆𝐸 

(III-1) 

 
 
 

 
 

 
Figure III-1: SSIM measurement flow system diagram [56] 

Root-Mean-Square Error (RMSE) 
Like PSNR, this also compares the original 

ground-truth image and up-sampled image pixel 
by pixel. Based on the equation written on 
equation (III-2), the smaller value of RMSE 
means the similarity between the two images is 
high.  
𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸	

𝑀𝑆𝐸 =
1
𝑚𝑛 H H[𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	 − 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑])

#7(

8/0

!7(

3/0

 

(III-2) 

Structural Similarity Index Measure (SSIM) 
SSIM method is developed based on that 

human visual recognition uses structural 
information of an image as a feature to 
understand the quality of the image [56]. This 
method is different from PSNR and RMSE as 
SSIM tried to handle classical image quality 
assessments’ problem by comparing local 
patterns, including luminance and contrast of the 
image. In conclusion, this method assesses 
reduction in structural information following the 
process described in Figure III-1. The equation to 
obtain SSIM is written on Equation (III-3), Greek 
letter mu means mean value, sigma means 
standard deviation of each image (x and y). The 

sigma with the subscript of x and y means cross-
covariance of x and y images (two image x and y 
is used to compare the similarity). The c with 
different subscripts is a small constant for 
preventing instability of the equation as 𝜇9) + 𝜇:)  
reaches zero and a similar issue for deviation 
bracket. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇9𝜇: + 𝑐()(2𝜎9: + 𝑐))

(𝜇9) + 𝜇:) + 𝑐()(𝜎9) + 𝜎:) + 𝑐))
 

(III-3) 

 
Feature Similarity Index Metric (FSIM) [57] 

 

FSIM method uses low-level features to imitate 
human visual perceptions. The primary feature 
used for FSIM is the phase congruency (PC, PC 
in equation) which measures the significance of 
local structure. However, the phase congruency 
does not include contrast information, whereas 
the human visual system gets information from 
the contrast. Therefore, Gradient Magnitude 
(GM, G in equation) is applied as a secondary 
feature that can be calculated easily by applying 
convolution of gradient operators such as Sobel, 
Prewitt and Scharr operators [58], [59]. The 
gradient operator applied for partially 
differentiated f(x) is described in  
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Table III-1. With these two features extracted 

from the image, the local similarity map is 
primarily calculated, and then the similarity map 
is pooled up into a single index value, FSIM. The 
index can be calculated with Equation (III-4). The 
equation uses matrix x, which is the matrix of 
pixel values abstracted by the example flow 
illustrated in Figure IV-1. The Ω on summation 
(upper case Sigma) is used to inform the whole 
image is used for calculation. All ‘T’ on 
equations mean constant to add the stability of 
each function. ‘I’ and ‘Q’ represents the 
chrominance information as FSIM uses the ‘YIQ’ 
colour scale to assess the image.  

 
𝐹𝑆𝐼𝑀;

=
Σ<𝑆=> ⋅ 𝑆?(x) ⋅ j𝑆@(x) ⋅ 𝑆A(x)k

B ⋅ 𝑃𝐶!(x)	
Σ<𝑃𝐶!(x)

 

 
Where  

𝑆=>(x) =
2𝑃𝐶((x) ∙ 𝑃𝐶)(x) + 𝑇(
𝑃𝐶()(x) + 𝑃𝐶))(x) + 𝑇(

 

𝑆?(x) =
2𝐺((x) ∙ 𝐺)(x) + T)
𝐺()(x) + 𝐺))(x) + 𝑇)

 

𝑆@(x) =
2𝐼((x)I)(x) + 𝑇*
𝐼()(x) + I))(x) + T*

 

𝑆A(x) =
2𝑄((x)Q)(x) + 𝑇C
𝑄()(x) + Q))(x) + TC

 

𝑃𝐶!(E) = max(𝑃𝐶((x), PC)(x)) 
(III-4) 

 

 

 
Table III-1: Partial derivatives of f(x) with different gradient 
operators 

 𝐺9(Χ) 𝐺:(Χ) 

Sobel 1
4 y
1 0 −1
2 0 −2
1 0 −1

z	

∗ 𝑓(Χ) 

1
4 y

1 2 1
0 0 0
−1 −2 −1

z

∗ 𝑓(Χ) 
Prewitt 1

3 y
1 0 −1
1 0 −1
1 0 −1

z	

∗ 𝑓(Χ) 

1
3 y

1 1 1
0 0 0
−1 −1 −1

z

∗ 𝑓(Χ) 
Scharr 1

16 y
3 0 −3
10 0 −10
3 0 −3

z	

∗ 𝑓(Χ) 

1
16 y

1 0 −1
2 0 −2
1 0 −1

z

∗ 𝑓(Χ) 
 

IV. BENCHMARK SETTING AND IMPLEMENTATION 

A. Image Datasets 
The image sets for this benchmark are 

categorized into three, and four image sets are 
used. ‘Set5’ and ‘Set14’ in ‘General scene 
images’, ‘Urban100’ in ‘Pattern images’ and 
‘KAIST text scene database tc-100’ for ‘text-
based images’. However, the computing resource 
for this project is only a laptop with a CPU (i7-
8750H). The time for running models/methods 
requires more than 10 minutes for edge-
preserving methods. Therefore, some image sets 
are reduced to 10 images instead of using whole 
images. Therefore, a total of 39 images used for 
this project. 
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Figure IV-1: Diagram of FSIM computation flow (f1: original image, f2: processed image)) [57] 

General Scene Images: Set5, Set14 
The general scene image sets are used for the 

control group to compare the performance from 
text images. The most commonly used general 
image sets, Set5 [60] and Set14 [61], are used for 
this project. The set5 includes five images, and 
set14 includes 14 images. Examples of images 
are “bird”, “butterfly wing”, “Lena” (woman with 
dress worn) and “barbara”. 

 

 
Figure IV-2: Set5 example image (bird) [60] 

 
Figure IV-3: Set14 example image (barbara) [61] 

Pattern Images: Urban100 
The pattern image set from Urban100 [62] 

includes images from urban, including patterns 
such as grid shape because of windows on a 
skyscraper. The pattern image set is included in 
this project to assess the distortion from the up-
sampling methods. However, this image set 
includes 100 images, the runtime for processing 
benchmark increases dramatically. Therefore, 
only the first ten images are selected. 
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Figure IV-4: Urban100 example image (img_005) [32] 

Text Images: KAIST Scene Text Database-tc100 
The text-based images are the essential dataset 

for this project. To consider the text-based image 
taken by the mobile camera, scanned 
documentation and images at a standstill are 
discarded. Therefore, image is taken from the 
various environment, including indoor and 
outdoor, and different light conditions are used 
for this project [63], [64]. Similar to ‘Urban100’, 
only the first ten images are used to reduce the 
benchmark runtime. 

 
Figure IV-5: KAIST Scene text database-tc100 example image 
[32]  

B. Color channel  
The most commonly used image colour channel 

is RGB, but the YCbCr colour channel is also 
used for Super-Resolution [46]. RGB channel 
expresses a pixel with three colours, Red, Green 
and Blue, whereas YCbCr uses Y, Cb and Cr, 
which are luma component, Chrominance of blue 
and Chrominance of red, respectively. 

Using different colour channels has not been 
provided in performing the SR methods and 
evaluation result in the early deep-learning 
research. Therefore, most earlier deep learning 
models used the YCbCr channel, which had 
convenience on Y's luminance component. 
However, recent models and more traditional 
methods use the RGB scale, which is the absolute 

value for each pixel as the RGB scale showed 
better performance than YCbCr. The image with 
RGB channel trained with YCbCr and with RGB 
shows about 4dB [65].  

Therefore, this project will use RGB space for 
all deep-learning pre-trained models and 
mathematical interpolation methods. 

 
C. Benchmark flow design 

The flow of the benchmark is designed as 
illustrated in Figure IV-6. The ground-truth 
(original) image is down-sampled with a down-
sampler and saved on separate storage. The 
down-sampling process is done for four scaling 
factors: 2, 3, 4 and 8. The down-sampled images 
are then up-sampled with up-sampling methods 
explained in Section II. The up-sampled images 
are also stored on another storage. In the final 
stage, the up-sampled images are compared with 
the ground-truth original image using IQA 
metrics. The IQA metrics are also stored in CSV 
format for post-processing, such as graph 
plotting, statistical analysis.  
 
D. Benchmark availability by scaling factor 

As illustrated on section II, some methods and 
models are built for up-sampling to a specific 
scale only. Some of the models/methods are not 
available for some scale factor on the benchmark. 
The list of availability is written in Table IV-1. 
Therefore, a scaling factor of 3 and 8 can be 
unfair compared to other methods, but it is 
essential to find the best alternative method. 
Other available methods are benchmarked. 
Table IV-1: Up-sampling methods/models availability by scaling 
factor 

Method\Scale x2 x3 x4 x8 
Nearest O O O O 
Bilinear O O O O 
Bicubic O O O O 
Lanczos O O O O 
iNEDI O  O O 
ICBI O  O O 
DRCN O O O  
EDSR O O O  
ESPCN O O O  
FSRCNN O O O  
VDSR_NN O O O O 
VDSR_Bilinear O O O O 
VDSR_Bicubic O O O O 
VDSR_Lanczos O O O O 
LapSRN O  O  
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Figure IV-6: Benchmark process diagram 

E. Benchmark implementation (codes) 
The benchmark implementation with Python is 

uploaded on  
https://github.com/ArtemisDicoTiar/sisr_project. 
The general understanding of the implemented 
codes is provided by a short pseudo-code written 
in the following sections. The pseudo-code 
format follows Python syntax in general cases. 

 
Down-sampling process 
 The down-sampler is built by taking some 
pixels from the original image sparsely. The 
pseudo-code of the down-sampler is implemented 
on Pseudo Code 1. The resulting matrix is then 
converted to an image using PNG for file 
extension and saved on separate storage. When 
loading and saving the image 'OpenCV2' library 
is used to process. (% operator results remainder 
of dividing two numbers before and after.) 
 
Pseudo Code 1: Pseudo code of Down-sampler implementation 

START 
FOR y_index IN image's rows: 
  FOR x_index IN image's columns: 
    IF x_index % scaling_factor == 0 AND y_index % 
scaling_factor == 0: 
      APPEND the pixel value to target down-
sampled matrix 
 
RETURN down-sampled matrix 
END 
 
 
 

Up-sampling process 
The up-sampling process is mainly done with 

pre-built code and libraries that support graphical 
processing. Therefore, the process itself does not 
include complex processes. However, the pre-
built codes distributed by each model proposers 
are developed on their computing environments. 
The resulting image exporting and target image 
importing processes of the pre-built codes are 
slightly modified to fit general computing 
environments. The pre-built codes written in 
MATLAB is run on ‘MATLAB engine’ in 
Python code, and the deep-learning codes are run 
on Tensorflow or PyTorch session. Finally, the 
comprehensive pseudo-code for the up-sampling 
process is written below (Pseudo Code 2). 

 
Pseudo Code 2: Pseudo code for up-sampling process 

START 
FOR scaling_factor IN [2, 3, 4, 8]: 
  FOR image_set IN [Set5, Set14, Urban100, Text]: 
    FOR target_image IN image_set: 
      FOR upSamplingMethod IN upSamplingMethods: 
        img = upSamplingMethod(target_image) 
        SAVE img ON storage name: image_set 
END 
 
IQA metrics outputting / result graph plotting 

 

The up-sampled images are then applied to IQA 
metrics. The process is used multiple times for 
every image, so the code itself is implemented in 
object-oriented programming using class. The 
IQA metrics can be implemented by directly 
using matrix calculation. However, unlike 
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'RMSE' and 'PSNR', which can be easily 
implemented with simple matrix calculation that 
directly compares pixel value on the same 
coordinate, 'FSIM' and 'SSIM' use more complex 
matrix calculation more nearby pixels. Therefore, 
the IQA metrics are also implemented with the 
libraries that efficiently and effectively use the 
computing resources. The pseudo-code of 
extracting IQA metric results is written on  

Pseudo Code 3. The code for the graph plot can 
be differed by changing x-axis, y-axis settings. 
For this reason, the pseudo-code for the graph 
plot is not provided in this paper. 
 

Pseudo Code 3: Pseudo code of IQA metrics process 

START 
FOR scaling_factor IN [2, 3, 4, 8]: 
  FOR image_set IN [Set5, Set14, Urban100, Text]: 
    FOR target_image IN image_set: 
      original_img=load(from=Grountruth image 
storage) 
      upSampled_img=load(from=upSampled image 
storage) 
             
      FOR IQA_metric IN [RMSE, PSNR, FSIM, SSIM]: 
        ON result_table  
        APPEND{ 
          IQA_metric(original_img, upSampled_img)} 
END 
                 

F. Graphical User Interface (GUI) Implementation 
The graphical user interface is also developed 

besides the benchmark code implementation. The 
GUI is usually built with three codes and files for 
specific purposes: Front-end design, Front-end 
code, and Backend Code. The front-end design is 
the graphical layout that users see and interact 
with it. The front-end code is the functionality of 
the viewable window. The code includes the react 
of user's action such as button click and 
dropdown selection. Lastly, the backend code is 
the key function of the program. The backend 
code's action is invisible to the user directly as 
they run behind the viewing window (this is why 
the code is called as 'backend). For this project, 
the program's primary function is to up-sample 
the target image or experiment with the up-
sampling methods with an image and outputs 
both IQA metrics and up-sampled images. 
Therefore, the program's main functions, which 
already implemented benchmark code 
implementation, are built on the backend. 
 

Front-end User Interface (UI) design 
The front-end UI is developed with 

'QtDesigner', an official design tool for 'PyQt5'. 
The front-end viewport is set as three windows. 
The windows are the SISR program setting 
window, processing bar window and result 
window. 

The primary window illustrated in Figure IV-7 
shows a selection button for which up-sampling 
methods to be used for processing, a dropdown 
box for scaling factor selection and another 
dropdown box that selects program mode, either 
experimental or production. The image can be 
selected by pressing the '…' button in the middle. 
The button will lead to another window that 
browses the user's local directory. By pressing 
'OK' on the bottom closes the primary window 
and opens the progress bar window. 

The following window shows the current 
processing model/method and how much the 
program has processed as textbox and progress 
bar on Figure IV-8. This window closes after all 
methods selected on the primary setting window. 
When all methods are processed, the final 
window is then visible. 

In Figure IV-9, the final window shows an up-
sampled image with the target input image. The 
up-sampled images can be saved by pressing the 
'Save As' button. Also, the IQA metrics are 
visible as a bar graph on the right side of the 
window. The graph can be saved and can save the 
data as CSV. The order of up-sampled image and 
IQA metric graphs can be sort by selecting 
desired IQA metric on the dropdown box next 
'Sort by:'. All temporary data and result images 
are deleted; therefore, the warning window 
appears. 
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Figure IV-7: Front-end first view for setting SR experiment and 
production 

Front-end code implementation 
The parts that require actions on the front-end 

are buttons, dropdown box, checkbox, and 
window transition.  

The checkbox and dropdown box actions are 
already provided by the 'PyQt5' application 
programming interface (API). Therefore, the only 
appropriate functions should be applied to the 
'stateChanged' API function. The applied function 
changes the variable value and stores values in a 
separate class. The checkboxes and dropdown 
boxes on the first window use API's state class to 
update the variable value. 

The button click is like the checkbox and 
dropdown box, so applying an appropriate 
function to the 'OK', 'Cancel' and 'clicked' API 
function will make the buttons work. The cancel 
button is connected to the window closes, and the 
program ends from the system. The ok button will 
also close to progress to the next stage's window 
or finish the program if the current window is the 
last result window. Lastly, 'Save As', 'Export 

Graph' and 'Export Data' buttons open the system 
browser window to obtain the saving directory. 
When the saving directory is selected, the target 
data is saved on the directory. 

Lastly, the window transition is done by 
checking the either 'OK' button is pressed or the 
all selected up-sampling process is done. The 
window transition is processed by closing the 
current window and opening the next window in 
the same computing process. Values from each 
window are stored on the class variable. The class 
is initialised at the beginning of the front-end 
program. By saving the value on the common 
class, the value can be used by other stage 
windows. This value storing process is done on 
the first window: program setting. 

The code can be found on the Github 
repository, and the pseudo-code is not provided 
as its functionality does not require a complicated 
process, and the length of code is long to bind UI 
design and backend. 

 
Backend code implementation 

The backend code is the main functionality of 
this program. All up-sampling methods and 
models are run by backend code. Based on the 
program setting value obtained from the first 
window, the up-sampling methods are run while 
the second window is opened. 

The backend codes are mainly built following 
the codes built for the benchmark. Therefore, the 
pseudo-code on Pseudo Code 4 shows a similar 
structure compare to the benchmark's pseudo-
codes. The up-sampled images and IQA metrics 
are saved on a temporary directory as front-end 
loads from the file to make the data visible. 
 
Pseudo Code 4: Pseudo code for backend of GUI 

START 
 
FOR selectedMethod IN selectedMethods: 
    SAVE selectedMethod(dataClass.targetImage) 
    ON temporary directory 
    AS str(selectedMethod + original image 
name).png 
 
FOR iqaMetric IN iqaMetrics: 
    APPEND iqaMetric(upSampledImage) 
    ON iqaMetricsTable 
 
SAVE iqaMetricsTable 
ON temporary directory 
AS iqaMetricTable.csv 
 
END 
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Figure IV-8: Front-end second window showing processing status 

 
Figure IV-9: Front-end final window with up-sampled images and IQA metrics 

V. EXPERIMENT RESULTS 

The benchmark results are massive to illustrate 
on one table. Therefore, the sections are divided 
by image sets and the tables are separated by the 
scale factor. For the laconism of the content, all 
tables with the details are described in Appendix. 
The up-sampled, down-sampled and ground truth 
image can be found on the ‘Github’ repository 
written on the footnote of the first page.  

Furthermore, the IQA result with whole 
decimals are challenging to fit into this paper, so 
the paper uses IQA metrics rounded at the 4th 
decimal point. The full decimal point results are 
also available on the ‘Github’ repository and the 
implemented codes. The IQA result not available 

due to methods’/models’ setting remains as blank 
on all tables. To provide better understanding 
about the result, example result images are 
plotted for every section. 
 
General Scene Images: Set5 

The ‘Set5’ image set contains general scene 
images. The IQA metrics of Set 5 image set show 
‘ICBI’ is the dominating method. The IQA 
metrics that do not show ‘ICBI’ as the best 
method are the case where ‘ICBI’ is not available 
for the condition such as the benchmark setting 
with scaling factor of 3.   

While analysing the result for scaling factor of 
3, ‘EDSR’ shows the best performance for 
‘FSIM’ while ‘bilinear interpolation’ shows the 
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best performance for ‘PSNR’ and ‘RMSE’, 
‘ESPCN’ shows the best for ‘SSIM’. 

The cropped result images for ‘butterfly’ with a 
scaling factor of 2 on Figure V-1 shows that most 
up-sampling methods output smooth and easily 
recognisable border lines. The nearest neighbour 
only showed stair-like grid shape image pixels. 
This can also be found on IQA metrics that 
results for scaling factor of 2 have similar values. 

The example result image for ‘butterfly’ with a 
scaling factor of 4 on Figure V-2 shows that 
‘EDSR’ and ‘LapSRN’ have clear and sharp 
butterfly’s wing pattern. This is smoother with 
the zoomed image in Figure V-3. However, the 

IQA metrics result that ‘ICBI’ is showing the best 
performance. 

Furthermore, the cropped image for ‘butterfly’ 
with a scaling factor of 8 is illustrated in Figure 
V-4. As the experiment condition requires to up-
sample from extremely low-resolution, most of 
the images show barely recognisable butterfly’s 
wing pattern. The ‘ICBI’ even showed artefacts 
of red dots on the image.   

Overall, objective IQA metrics result that the 
ICBI is the best performing method for the Set 5 
dataset. However, the ICBI method’s result 
images show some artefacts and the hardly 
identifiable edge of the object.

Table V-1: IQA metrics with the average for Set 5 image dataset. (The best performance method for each scaling factor shows bold and 
underlined IQA metric value.)

iqa factor DRCNN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_ 
bicubic 

VDSR_ 
bilinear 

VDSR_ 
lanczos 

VDSR_ 
nearest 

bicubic bilinear lanczos nearest 

FSIM 

2 0.701 0.747 0.743 0.738 0.753 0.694 0.736 0.689 0.716 0.664 0.651 0.736 0.743 0.726 0.736 

3 0.631 0.645 0.64 0.637 
   

0.596 0.624 0.565 0.532 0.637 0.643 0.629 0.54 

4 0.57 0.574 0.572 0.566 0.641 0.534 0.571 0.544 0.565 0.535 0.455 0.571 0.576 0.567 0.441 

8 
    

0.51 0.424 
 

0.442 0.441 0.437 0.359 0.447 0.448 0.442 0.309 

PSNR 

2 50.084 52.366 52.415 52.173 54.638 50.501 52.248 47.184 48.143 46.681 46.068 52.174 52.325 52.054 50.379 

3 47.856 48.342 48.466 48.385 
   

44.877 46.11 44.18 44.3 48.262 48.551 48.109 46.824 

4 46.174 46.223 46.486 46.351 49.623 44.886 46.38 43.98 45.068 43.836 42.883 46.197 46.675 46.043 44.917 

8 
    

45.183 41.375 
 

41.87 42.294 41.737 40.721 42.424 42.964 42.263 41.373 

RMSE 

2 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.005 0.004 0.005 0.005 0.003 0.003 0.003 0.003 

3 0.004 0.004 0.004 0.004 
   

0.006 0.005 0.007 0.006 0.004 0.004 0.004 0.005 

4 0.005 0.005 0.005 0.005 0.004 0.006 0.005 0.007 0.006 0.007 0.008 0.005 0.005 0.005 0.006 

8 
    

0.006 0.009 
 

0.009 0.008 0.009 0.01 0.008 0.008 0.008 0.009 

SSIM 

2 0.988 0.993 0.993 0.993 0.996 0.988 0.993 0.979 0.983 0.977 0.974 0.993 0.993 0.993 0.989 

3 0.98 0.983 0.983 0.982 
   

0.963 0.972 0.957 0.959 0.982 0.983 0.981 0.975 

4 0.971 0.971 0.973 0.972 0.986 0.957 0.972 0.953 0.963 0.951 0.943 0.971 0.973 0.97 0.962 

8 
    

0.962 0.917 
 

0.925 0.933 0.923 0.909 0.935 0.941 0.932 0.921 
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Figure V-1: Set5, butterfly image with a scaling factor of 2, zoomed image. 

 

 
Figure V-2: Set5, butterfly image with a scaling factor of 4, overall result 
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Figure V-3: Set5, butterfly image with a scaling factor of 4, zoomed image. 

 

 
Figure V-4: Set5, butterfly image with a scaling factor of 8, zoomed image. 

 
General Scene Images: Set14 

The IQA metrics of Set14 image set also show 
that ‘ICBI’ is the dominating method. The 
experiment condition with scaling factors of 3 
and 8 are not available to some method described 
in Table IV-1. For a scaling factor of 3, ‘bicubic 
interpolation’ showed the best performance for 
‘FSIM’ and ‘bilinear interpolation’ for other IQA 
metrics. 

The cropped up-sampled images of ‘zebra’ for 
scaling factor of 2 on Figure V-5 show a 

transparent black and white pattern. Some 
methods, including ‘bilinear interpolation’ and 
‘bicubic interpolation’, show smoothness between 
white and black, making it challenging to 
recognise the border. Other methods show clear 
boundary but ‘VDSR with Lanczos pre-
interpolation’ shows some artefact nearby the 
boundary. 

The same image with a scaling factor of 4 is 
illustrated in Figure V-6 and cropped image to 
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analyse boundary lines is illustrated in Figure 
V-7. From Figure V-6, there are some stair-like 
pixels on ‘VDSR’ up-sampled images. Other 
methods show a clear zebra’s pattern, smooth and 
sharp. However, due to distorted information 
stored on the down-sampled image, the pattern on 
the zebra’s ankle is flatten as grey (combination 
of black and white). It is having a pattern but 
distorted, so its pattern does not match with the 
original image. The zoomed image on Figure V-7  
with the same region as Figure V-5 shows that 
basic interpolation methods, ‘VDSR’ and 
‘DRCN’, shows bad boundary line either stair-

like pixels or artefacts near the boundary line. 
The sharpest and clear boundary line can be seen 
on ‘EDSR’, but it is not the best performing 
method on IQA metrics. The ‘ICBI’ is the 
dominant method for scaling by 4, but it shows 
the black artificial line on the white region. 
 Lastly, the image process with a down-sampled 
by scaling factor of 8 is illustrated in Figure V-8. 
Basic interpolation methods and ‘VDSR’ shows 
stair-like block pixels and the artificial line next 
to the boundary. The ‘iNEDI’ and ‘ICBI’ show 
clear boundary, but the methods also show red 
and yellow dots on the white region.

 
Table V-2: IQA metrics with the average for Set 14 image dataset. (The best performance method for each scaling factor shows bold and 
underlined IQA metric value.)

iqa factor DRCNN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_ 
bicubic 

VDSR_ 
bilinear 

VDSR_ 
lanczos 

VDSR_ 
nearest 

bicubic bilinear lanczos nearest 

FSIM 

2 0.66 0.714 0.71 0.704 0.726 0.659 0.704 0.658 0.688 0.627 0.613 0.705 0.708 0.69 0.707 

3 0.59 0.595 0.589 0.588 
   

0.563 0.585 0.541 0.509 0.597 0.597 0.591 0.514 

4 0.527 0.522 0.517 0.513 0.582 0.486 0.516 0.514 0.522 0.509 0.447 0.529 0.528 0.528 0.428 

8 
    

0.458 0.392 
 

0.404 0.403 0.399 0.349 0.406 0.406 0.401 0.299 

PSNR 

2 47.07 49.445 49.565 49.329 51.117 47.983 49.529 45.645 47.029 45.134 44.229 49.413 49.693 49.231 48.019 

3 45.775 46.219 46.443 46.382 
   

43.287 44.916 42.731 43.023 46.208 46.536 46.049 45.047 

4 44.54 44.563 44.891 44.822 46.84 43.525 44.84 42.486 44.068 42.417 41.898 44.601 45.126 44.432 43.524 

8 
    

43.634 40.685 
 

41.107 41.602 40.975 40.079 41.568 42.115 41.418 40.654 

RMSE 

2 0.005 0.004 0.003 0.004 0.003 0.004 0.004 0.005 0.005 0.006 0.006 0.004 0.003 0.004 0.004 

3 0.005 0.005 0.005 0.005 
   

0.007 0.006 0.008 0.007 0.005 0.005 0.005 0.006 

4 0.006 0.006 0.006 0.006 0.005 0.007 0.006 0.008 0.006 0.008 0.008 0.006 0.006 0.006 0.007 

8 
    

0.007 0.01 
 

0.009 0.009 0.009 0.01 0.009 0.008 0.009 0.01 

SSIM 

2 0.978 0.987 0.988 0.987 0.99 0.982 0.987 0.97 0.977 0.967 0.96 0.987 0.988 0.986 0.983 

3 0.972 0.974 0.975 0.975 
   

0.951 0.964 0.945 0.949 0.974 0.975 0.973 0.967 

4 0.963 0.963 0.966 0.965 0.976 0.954 0.965 0.941 0.958 0.94 0.935 0.963 0.967 0.962 0.955 

8 
    

0.955 0.923 
 

0.926 0.934 0.924 0.91 0.936 0.942 0.933 0.923 
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Figure V-5: Set14, zebra image with a scaling factor of 2, zoomed image. 

 
 

Figure V-6: Set14, zebra image with a scaling factor of 4, overall result 
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Figure V-7: Set14, zebra image with a scaling factor of 4, zoomed image. 

 

 
Figure V-8: Set14, zebra image with a scaling factor of 8, zoomed image. 

Pattern Images: Urban100 
The IQA metrics for partial Urban100 image 

set (first ten images) on Table V-3 shows that 
‘ICBI’ is the dominating method. For the scaling 
factor of 3, where ‘ICBI’ is not available for the 
condition, ‘EDSR’ is the best method with 
‘FSIM’ and ‘SSIM’, whereas ‘bilinear 
interpolation’ shows the best performance for 
‘PSNR’ and ‘RMSE’. 

The up-sampled results with a scaling factor of 
2 on Figure V-9 show mostly clear columns while 
thin wires are up-sampled with stair-like pixels.  

The ‘EDSR’ showed two recognisable wires, 
whereas other methods result in either almost one 
wire or two wires with aliasing. 

For the result from the scaling factor of 4, all 
the methods show region divided by thick 
columns with clear borderline. However, the 
window region shows some artefacts and aliasing 
due to two thin wires. The window region on 
‘EDSR’ showed sharp and smooth column and 
wires except for few window regions. The down-
sampled image may cause the window region 
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with aliasing lost information of the wire. The 
basic interpolation methods and ‘VDSR’ shows 
wiggly wires in Figure V-11. Even more, the 
basic interpolation methods, ‘VDSR’, ‘ICBI’ and 
‘DRCN(N)’ failed to up-sampled the thick 
columns.   

Lastly, the up-sampled results with a scaling 
factor of 8 are illustrated in Figure V-12. All the 
methods failed to up-sample the pixels for not 
only thin wires but also the thick columns. The 
up-sampled images all show wiggly and stair-like 
pixels with aliasing. Also, the ‘ICBI’ shows blue 
and red dots artefacts.

Table V-3: IQA metrics with average for part of Urban100 image dataset. (The best performance method for each scaling factor shows bold 
and underlined IQA metric value.)

iqa factor DRCNN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_ 
bicubic 

VDSR_ 
bilinear 

VDSR_ 
lanczos 

VDSR_ 
nearest 

bicubic bilinear lanczos nearest 

FSIM 

2 0.634 0.704 0.696 0.688 0.707 0.65 0.69 0.639 0.671 0.614 0.599 0.685 0.693 0.671 0.686 

3 0.566 0.584 0.575 0.571 
   

0.538 0.567 0.513 0.494 0.571 0.574 0.563 0.489 

4 0.505 0.509 0.505 0.501 0.566 0.475 0.507 0.489 0.506 0.482 0.433 0.506 0.507 0.504 0.399 

8 
    

0.449 0.385 
 

0.397 0.398 0.394 0.348 0.399 0.4 0.396 0.286 

PSNR 

2 44.483 47.304 47.559 47.323 49.012 46.047 47.493 44.48 46.112 44.067 43.05 47.399 47.728 47.176 46.03 

3 43.811 44.0 44.572 44.45 
   

41.958 43.855 41.367 41.824 44.274 44.634 44.103 43.169 

4 42.81 42.548 43.205 43.063 44.683 41.823 43.137 41.13 43.023 41.06 40.735 42.855 43.425 42.679 41.846 

8 
    

41.945 39.572 
 

40.218 40.86 40.049 39.139 40.381 41.009 40.205 39.488 

RMSE 

2 0.006 0.005 0.004 0.005 0.004 0.005 0.004 0.006 0.005 0.007 0.007 0.005 0.004 0.005 0.005 

3 0.007 0.007 0.006 0.006 
   

0.008 0.007 0.009 0.008 0.006 0.006 0.007 0.007 

4 0.008 0.008 0.007 0.007 0.006 0.009 0.007 0.009 0.007 0.009 0.01 0.008 0.007 0.008 0.008 

8 
    

0.008 0.011 
 

0.01 0.009 0.01 0.012 0.01 0.009 0.01 0.011 

SSIM 

2 0.964 0.98 0.981 0.98 0.985 0.972 0.981 0.965 0.975 0.962 0.953 0.98 0.981 0.979 0.974 

3 0.957 0.959 0.963 0.962 
   

0.938 0.957 0.93 0.937 0.961 0.963 0.959 0.951 

4 0.946 0.944 0.95 0.949 0.963 0.928 0.949 0.925 0.948 0.923 0.919 0.946 0.952 0.945 0.935 

8 
    

0.933 0.89 
 

0.908 0.918 0.905 0.888 0.911 0.921 0.908 0.895 

 
Figure V-9: Urban100, img_002 image with a scaling factor of 2, zoomed image. 
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Figure V-10: Urban100, img_002 image with a scaling factor of 4, overall result 

 

 
Figure V-11: Urban100, img_002  image with a scaling factor of 4, zoomed image. 



 32 

 
Figure V-12: Urban100, img_002 image with a scaling factor of 8, zoomed image. 

 
 
Text Images: KAIST Scene Text Database tc-100 

The IQA metrics of ‘KAIST Scene Text 
Database tc-100 (following, tc-100)’ also result 
that ‘ICBI’ is the best-performing methods. For 
the scaling factor of 3, where the condition that 
‘ICBI’ cannot be processed, ‘FSIM’ shows that 
‘VDSR with bilinear pre-interpolation’ is the best 
performing method. At the same time, other IQA 
metrics results that ‘bilinear interpolation’ having 
the best performance. 

The IQA metrics of Set14 image set also show 
that ‘ICBI’ is the dominating method. The 
experiment condition with scaling factors of 3 
and 8 are not available to some method described 
in Table IV-1. For a scaling factor of 3, ‘bicubic 
interpolation’ showed the best performance for 
‘FSIM’ and ‘bilinear interpolation’ for other IQA 
metrics. 
  The result images with a scaling factor of 4 are 
illustrated in Figure V-13. All the methods show 
a clear boundary line of the text. There are some 
wiggling pixel values on the blue background 
between texts from ‘VDSR’ and ‘DRCN(N)’. 

The result images with a scaling factor of 4 are 
illustrated in Figure V-14. The texts are easily 
recognisable for all methods’ result. However, the 
zoomed result on Figure V-15 shows that ‘basic 
interpolation methods’, ‘VDSR’ and ‘DRCN(N)’ 
results stair-like block pixels on the curve of the 
character. The other methods show the smooth 
curve of the character. The ‘EDSR’, ‘LapSRN’, 
‘iNEDI’, ‘FSRCNN’ and ‘ESPCN’ show clear 
and smooth boundary line compare to other 
methods. 

The zoomed images resulted with a scaling 
factor of 8 is plotted in Figure V-16. Because 
down-sampled image lost important information 
from the ground-truth image, most of the results 
show characters challenging to read. Furthermore, 
‘iNEDI’ and ‘ICBI’ show yellow artificial pixels. 
The full-size image is significant, and human 
visual perception is processed with structural 
information. All result images with a scaling 
factor of 8 on Figure V-17 are readable. 
However, the characters are wiggly and squashed 
with nearby characters, so it is barely recognised. 
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Table V-4: IQA metrics with average for part of KAIST Scene Text Database tc-100 image dataset. (The best performance method for each 
scaling factor shows bold and underlined IQA metric value.)

iqa factor DRCNN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_ 
bicubic 

VDSR_ 
bilinear 

VDSR_ 
lanczos 

VDSR_ 
nearest 

bicubic bilinear lanczos nearest 

FSIM 

2 0.594 0.617 0.62 0.617 0.627 0.596 0.616 0.602 0.622 0.585 0.584 0.608 0.611 0.604 0.6 

3 0.531 0.542 0.544 0.546 
   

0.535 0.549 0.52 0.496 0.533 0.537 0.53 0.502 

4 0.483 0.5 0.495 0.497 0.524 0.462 0.499 0.487 0.502 0.483 0.431 0.485 0.491 0.484 0.443 

8 
    

0.443 0.384 
 

0.406 0.405 0.404 0.349 0.4 0.4 0.398 0.325 

PSNR 

2 54.978 56.456 56.449 56.294 58.23 54.838 56.477 49.311 49.977 48.654 48.721 56.277 56.465 56.204 54.997 

3 52.312 52.705 52.871 52.884 
   

47.601 48.37 47.084 47.104 52.752 52.955 52.655 51.569 

4 50.629 50.645 50.867 50.794 53.254 49.023 50.784 46.774 47.589 46.744 46.081 50.673 51.051 50.548 49.653 

8 
    

48.901 45.243 
 

44.94 45.265 44.849 44.21 46.644 47.073 46.523 45.851 

RMSE 

2 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.004 0.003 0.004 0.004 0.002 0.002 0.002 0.002 

3 0.003 0.002 0.002 0.002 
   

0.004 0.004 0.005 0.005 0.002 0.002 0.002 0.003 

4 0.003 0.003 0.003 0.003 0.002 0.004 0.003 0.005 0.004 0.005 0.005 0.003 0.003 0.003 0.003 

8 
    

0.004 0.006 
 

0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 

SSIM 

2 0.996 0.997 0.997 0.997 0.998 0.996 0.997 0.978 0.979 0.977 0.977 0.997 0.997 0.997 0.996 

3 0.993 0.993 0.994 0.994 
   

0.973 0.976 0.972 0.972 0.993 0.994 0.993 0.991 

4 0.989 0.99 0.99 0.99 0.994 0.986 0.99 0.97 0.973 0.97 0.967 0.99 0.99 0.989 0.987 

8 
    

0.984 0.971 
 

0.962 0.964 0.961 0.956 0.977 0.979 0.976 0.972 

 
Figure V-13: tc-100, DSC3091 image with a scaling factor of 2, zoomed image. 
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Figure V-14: tc-100, DSC3091 image with a scaling factor of 4, overall result 

 

 
Figure V-15: tc-100, DSC3091 image with a scaling factor of 4, zoomed image. 
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Figure V-16: tc-100, DSC3091 image with a scaling factor of 8, zoomed image. 

 

Figure V-17: tc-100, DSC3091 image with a scaling factor of 8, overall result. 

Overall conclusion 
Overall results based on objective IQA metrics 

can be interpreted as ‘ICBI’ is the dominating 
method for up-sampling most categories and 
scaling factors (except scaling factor of 3, which 
is unavailable to perform with ‘ICBI’). The 
PSNR difference between ‘ICBI’ and the worst-
performing method is about 5dB, while the 
difference between bilinear interpolation is about 
1.5dB. The RMSE shows about 0.003 difference 
both for the worst-performing method and 
bilinear interpolation. This is because of the 
calculation of RMSE, which targeted to have 0 
when the similarity between up-sampled image 
and ground-truth image increases. Therefore, the 
number of RMSE is extremely small. The FSIM 
difference between ‘ICBI’ and the worst method 

is about 0.1 for all scaling factor, while the 
difference between bilinear and ‘ICBI’ is around 
0.01~0.05. The SSIM difference between ‘ICBI’ 
and the worst-performing method is about 0.03, 
and the difference between bilinear interpolation 
and ‘ICBI’ is about 0.01. 

The ‘RMSE’ and ‘PSNR’ are used to compare 
the similarity between the up-sampled image and 
the ground-truth image. The +1.5dB of PSNR 
between ‘bilinear interpolation’ and ‘ICBI’ means 
‘ICBI’ is a well-performing method. (Other 
proposal papers usually mentions that their 
method is a better way to up-sample by referring 
to +0.3~3.0dB of PSNR). The ‘SSIM’ and 
‘FSIM’ results that ICBI has better IQA metrics 
than bilinear interpolation by about +0.03. 
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According to Figure V-18, 19, 20 and 21, the 
IQA metric shows that all methods perform best 
on a scaling factor of 2 and worsen as the scaling 
factor increases. In addition, ‘SSIM’, ‘PSNR’ and 
‘RMSE’ shows that all the methods perform best 
on ‘tc-100 (text dataset)’ and worst on 
‘Urban100’. This means all methods struggle to 
up-sample image with the pattern. For ‘FSIM’, 
‘tc-100 (text dataset)’ shows the worst 
performance most methods. This can be 

interpreted as the understanding of the up-
sampled image based on feature is difficult for 
text-based images compare to other image sets. 

The mean IQA metrics without considering the 
dataset are plotted on Figure V-22, 23, 24 and 25. 
The figures show that ‘ICBI’ shows the best 
performance for all IQA metrics, and most other 
deep-learning-based methods show generally 
outstanding performance.

 
Table V-5: The average IQA metrics of all categories by each IQA metric. (blank means the method/model is unavailable for the benchmark 
condition.)

iqa factor DRCNN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_ 
bicubic 

VDSR_ 
bilinear 

VDSR_ 
lanczos 

VDSR_ 
nearest 

bicubic bilinear lanczos nearest 

FSIM 2 0.642 0.691 0.688 0.682 0.699 0.645 0.682 0.643 0.67 0.618 0.607 0.679 0.684 0.668 0.678 

PSNR 2 48.827 51.078 51.187 50.972 52.847 49.556 51.143 46.477 47.679 45.956 45.308 51.016 51.265 50.86 49.599 

RMSE 2 0.004 0.003 0.003 0.003 0.003 0.004 0.003 0.005 0.004 0.005 0.006 0.003 0.003 0.003 0.004 

SSIM 2 0.981 0.989 0.989 0.989 0.992 0.984 0.989 0.972 0.978 0.969 0.964 0.989 0.989 0.988 0.985 

FSIM 3 0.574 0.585 0.581 0.58 
   

0.553 0.576 0.531 0.505 0.579 0.582 0.573 0.508 

PSNR 3 47.206 47.576 47.863 47.803 
   

44.245 45.667 43.67 43.91 47.645 47.943 47.499 46.453 

RMSE 3 0.005 0.005 0.004 0.005 
   

0.007 0.006 0.007 0.007 0.005 0.004 0.005 0.005 

SSIM 3 0.974 0.976 0.978 0.977 
   

0.955 0.966 0.95 0.953 0.977 0.978 0.976 0.97 

FSIM 4 0.516 0.52 0.516 0.513 0.571 0.483 0.516 0.504 0.518 0.499 0.44 0.517 0.52 0.516 0.426 

PSNR 4 45.855 45.804 46.183 46.085 48.281 44.652 46.112 43.416 44.814 43.346 42.782 45.901 46.394 45.744 44.829 

RMSE 4 0.006 0.006 0.005 0.005 0.004 0.006 0.005 0.007 0.006 0.007 0.008 0.006 0.005 0.006 0.006 

SSIM 4 0.966 0.966 0.969 0.968 0.979 0.956 0.968 0.946 0.96 0.945 0.94 0.967 0.97 0.966 0.959 

FSIM 8 
    

0.459 0.392 
 

0.408 0.407 0.404 0.35 0.408 0.409 0.404 0.303 

PSNR 8 
    

44.735 41.63 
 

41.945 42.426 41.812 40.961 42.66 43.199 42.508 41.761 

RMSE 8 
    

0.006 0.009 
 

0.008 0.008 0.009 0.01 0.008 0.007 0.008 0.009 

SSIM 8 
    

0.958 0.926 
 

0.93 0.937 0.928 0.916 0.94 0.946 0.938 0.928 
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Table V-6: The up-sampling method’s name by minimum and maximum value from each IQA metric. The difference between the minimum and 
maximum value and the difference between bilinear interpolation and maximum value.

iqa factor Minimum value method Maximum value method IQA Difference  
min - max 

IQA Difference  
Bilinear - max 

FSIM 2 VDSR_nearest ICBI 0.092 0.015 

PSNR 2 VDSR_nearest ICBI 7.539 1.582 

RMSE 2 EDSR VDSR_nearest 0.003 0.003 

SSIM 2 VDSR_nearest ICBI 0.028 0.003 

FSIM 3 VDSR_nearest EDSR 0.08 0.003 

PSNR 3 VDSR_lanczos bilinear 4.273 0.0 

RMSE 3 ESPCN VDSR_bicubic 0.003 0.003 

SSIM 3 VDSR_lanczos ESPCN 0.028 0.0 

FSIM 4 nearest ICBI 0.145 0.051 

PSNR 4 VDSR_nearest ICBI 5.499 1.887 

RMSE 4 ICBI VDSR_nearest 0.004 0.003 

SSIM 4 VDSR_nearest ICBI 0.039 0.009 

FSIM 8 nearest ICBI 0.156 0.05 

PSNR 8 VDSR_nearest ICBI 3.774 1.536 

RMSE 8 ICBI VDSR_nearest 0.004 0.003 

SSIM 8 VDSR_nearest ICBI 0.042 0.012 

 

Figure V-18: RMSE results of each up-sampling methods (x-axis: scaling factor, y-axis: RMSE value) 
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Figure V-19: PSNR results of each up-sampling methods (x-axis: scaling factor, y-axis: RMSE value) 

 

Figure V-20: FSIM results of each up-sampling methods (x-axis: scaling factor, y-axis: RMSE value) 
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Figure V-21: SSIM results of each up-sampling methods (x-axis: scaling factor, y-axis: RMSE value) 

 

  

Figure V-22: The mean RMSE value of each up-sampling methods 

(x-axis: scaling factor, y-axis: RMSE value, left graph: scaling factor 2-8, right graph: scaling factor 2-4) 
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Figure V-23: The mean PSNR value of each up-sampling 

(x-axis: scaling factor, y-axis: PSNR value, left graph: scaling factor 2-8, right graph: scaling factor 2-4) 

 

 

  

Figure V-24: The mean FSIM value of each up-sampling methods 

(x-axis: scaling factor, y-axis: FSIM value, left graph: scaling factor 2-8, right graph: scaling factor 2-4) 
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Figure V-25: SSIM results of each up-sampling methods 

(x-axis: scaling factor, y-axis: SSIM value, left graph: scaling factor 2-8, right graph: scaling factor 2-4)

VI. DISCUSSIONS 

The objective Image Quality Assessment 
metrics result that 'ICBI' is the best performing 
method. However, by verifying every result 
image, the limitations of IQA metrics are 
recognised. In addition, limitations and issues that 
happened during the project will be described in 
this section. 
 
Limitation of objective IQA metrics 
 The FSIM and SSIM are proposed to overcome 
the limitation of existing objective IQA methods. 
It is designed to have a high correlation between 
human visual assessment, which is subjective 
IQA. However, the IQA metrics still showed 
some difference between human visual 
recognition and the numerical result from the 
metrics. This means the IQA metrics is having 
challenges of having a high correlation with 
human visual perception.  

The limited computing resource (Laptop with 
i7-8750H) caused the increase of computing time 
for both SR methods and IQA methods. 
Nevertheless, the other IQA metrics such as 
'Universal Image Quality Index (UIQ)', 'Signal to 
Reconstruction Error ratio (SRE)' and 
'Information theoretic-based Statistic Similarity 

Measure (ISSM)' were considered for this project. 
The limited time for the project and the 
computing power made it to cut off some IQA 
methods. If more computing power such as a 
Linux server with GPU was provided, more IQA 
metrics and more complex SR methods/models 
could be included in this project. Moreover, the 
following research topic will aim to make the 
IQA metric have a higher correlation between 
human visual perception using both statistical and 
deep-learning methods. 

 
Pretrained deep-learning model issue 

Due to limited computing resources, it was 
impossible to train each deep-learning model on 
the laptop. The laptop also does not have a 
compatible GPU that can do calculation 
acceleration for either 'TensorFlow' or 'PyTorch', 
which are deep-learning frameworks. Therefore, 
pre-trained models are used for the project to 
reduce the use of computing resource and time. 
However, the pre-trained models are trained by 
other images sets by model providers. The main 
goal of this project is to assess the performance of 
various SR methods for text-based images. 
Therefore, the models should be trained in not 
only general scene images but also the image that 
contains texts. However, most of pre-trained 
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models are using general scene images for 
training set. For this reason, deep-learning model 
may had performance drop for up-sampling text-
based images. 
 
Model/Method Running time 

The runtime of models/methods is also an 
essential factor. The more time requires for the 
method the less image can proceed for an equal 
amount of time. The edge-preserving methods, 
'ICBI' and 'iNEDI', showed about 100 times of 
runtime compared to other methods. Because this 
was not the case to be considered at the beginning 
of the project, each method's runtime was not 
measured and recorded. The reason for this issue 
may be caused by the way of processing the 
method. The statistical and mathematical methods 
process all the variables and pixel values during 
runtime. However, the deep-learning models 
achieves the filters and layers’ variables and 
coefficient during training time and process the 
input image with matrix calculation. As deep-
learning model uses less complex calculating 
terms compare to mathematical and statistical 
methods such as ‘ICBI’ and ‘iNEDI’, the runtime 
of deep-learning method is shorter than the 
others. 

Furthermore, the preparation experiment of this 
project showed a small amount of similar runtime 
for all methods. Therefore, the runtime was 
decided not to be recorded as it increases the 
overall running time. If further research is 
available after this project, the runtime for each 
method and image will be recorded. Moreover, 
implementing the methods that uses mathematical 
and statistical strategies to deep-learning related 
framework can be done on future research. This 
may lead to new perspective of SR problem. 
 
Artifacts produced on Edge-preserving Methods 

The artefacts (red, yellow, and blue dots) have 
been produced on both 'iNEDI' and 'ICBI' for a 
scaling factor of 8. This may be caused by the up-
sampling equation that both methods use refers to 
4~16 nearby pixels. The down-sampled image 
(scaling factor of 8) shows hardly recognisable 
borderline between objects and background or 
objects and objects. This means that the two 
methods refer to the pixels from more than two 
different objects and backgrounds. If the colour 

of the pixels are complementary colours or have 
huge luminance difference, the two SR methods 
may result in some weird pixels. 

This issue was not found on deep-learning 
methods, the state-of-the-art technique of SR 
problem. This is due to the difference in 
calculating target up-sample pixels. Therefore, it 
can be solved using deep-learning models that use 
various simple filters and layers instead of 
complex filters. 
 

VII. CONCLUSIONS/FUTURE WORKS 

The text-based images captured still have low-
resolution even the camera performance improves 
as people often try to capture the text from a far 
distance. In addition, the number plate on car is 
sometimes difficult to recognise when the CCTV 
on the highway is old model which has low 
capturing resolution. The captured image may be 
difficult to interpret easily as the character looks 
squashed. Several SISR methods have been 
developed and proposed for an extended period 
that advanced gradually to solve the low-
resolution problem for text-based images and 
general scene images. Starting from ‘basic 
interpolation methods’, ‘edge-preserving 
methods’ and ‘deep-learning methods’ are dealt 
with for this project to assess the performance, 
especially for text-based images.  

The benchmark has been proceeded by down-
sampling the target image sets, including text-
based images, besides general scene images and 
pattern images. Then the down-sampled images 
are up-sampled with the selected up-sampling 
methods. Basic interpolation methods are chosen 
to use as a baseline to compare other methods. 
Edge-preserving methods are selected to expect 
the methods have strength in up-sampling text-
based images. Lastly, deep-learning methods are 
the state-of-the-art technology in the SISR field, 
but only the well-proved methods are selected. 
The up-sampled pictures are then compared with 
ground-truth images with IQA metrics.  

Furthermore, to provide other regular users 
with ease of using up-sampling methods to obtain 
images with better recognition, the GUI is 
developed and supplied on the ‘Github’ 
repository. The GUI has been developed with 
‘PyQt5’, which is a python framework. 
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The result of IQA metrics shows that ‘ICBI’, an 
edge-preserving method, is the best performing 
method. However, the verification of the up-
sampled images results that IQA metrics cannot 
correlate highly with human visual reception. 
When the scaling factor increases, the general 
trend of all methods increases in IQA metrics. In 
addition, all methods show the best performance 
with a text-based image set. Taking mean value 
not considering the type of dataset results ‘ICBI’ 
is the best performing method. This result based 
on IQA metrics concludes that ‘ICBI’ is the best 
performing method for all types of images but 
shows best on text-based images. This can also 
inform people to use the deep-learning form and 
mathematically and statistically driven methods 
for up-sampling photos such as ‘ICBI’. 

This research topic, related to SISR, can be 
progressed in three directions, as discussed in 
Section VI. Primarily, more recent methods and 
more images can be analysed with better 
computation resources. Ultimately, the webpage 
that provides the benchmark of published SISR 
methods in real-time and the interface to test can 
be developed. Secondly, a more progressed 
model or method can be proposed for a specific 
condition. For instance, the SR methods with a 
scaling factor of 8 still need to be researched and 
developed. This may be more important to image 
with text as the public 3d map builders collect 
images while riding a car with a camera, far from 
the pedestrian road. Lastly, a better IQA metric 
can be developed to achieve a better correlation 
with human visual assessment. The metric may 
use not the only statistical model but also deep-
learning-based feature selecting methods. 

VIII. REFERENCES 
[1]        W. T. Freeman, T. R. Jones, and E. C. Pasztor, 

“Example-based super-resolution,” IEEE Computer 
Graphics and Applications, vol. 22, no. 2, pp. 56–
65, Mar. 2002, doi: 10.1109/38.988747. 

[2]        D. Glasner, S. Bagon, and M. Irani, “Super-
resolution from a single image,” in 2009 IEEE 12th 
International Conference on Computer Vision, Sep. 
2009, pp. 349–356, doi: 
10.1109/ICCV.2009.5459271. 

[3]        A. Rueda, N. Malpica, and E. Romero, “Single-
image super-resolution of brain MR images using 
overcomplete dictionaries,” Medical Image 
Analysis, vol. 17, no. 1, pp. 113–132, 2013, doi: 
https://doi.org/10.1016/j.media.2012.09.003. 

[4]        Y. Huang, L. Shao, and A. Frangi, “Simultaneous 
Super-Resolution and Cross-Modality Synthesis of 
3D Medical Images Using Weakly-Supervised Joint 
Convolutional Sparse Coding,” 2017 IEEE 
Conference on Computer Vision and Pattern 
Recognition (CVPR), pp. 5787–5796, 2017. 

[5]        H. Greenspan, “Super-Resolution in Medical 
Imaging,” The Computer Journal, vol. 52, no. 1, pp. 
43–63, Apr. 2008, doi: 10.1093/comjnl/bxm075. 

[6]        J. S. Isaac and R. Kulkarni, “Super resolution 
techniques for medical image processing,” in 2015 
International Conference on Technologies for 
Sustainable Development (ICTSD), Feb. 2015, pp. 
1–6, doi: 10.1109/ICTSD.2015.7095900. 

[7]        L. Schermelleh et al., “Super-resolution microscopy 
demystified,” Nature Cell Biology, vol. 21, no. 1, 
pp. 72–84, 2019, doi: 10.1038/s41556-018-0251-8. 

[8]        S. J. Holden, S. Uphoff, and A. N. Kapanidis, 
“DAOSTORM: an algorithm for high- density 
super-resolution microscopy,” Nature Methods, vol. 
8, no. 4, pp. 279–280, 2011, doi: 
10.1038/nmeth0411-279. 

[9]        G. Huszka and M. A. M. Gijs, “Super-resolution 
optical imaging: A comparison,” Micro and Nano 
Engineering, vol. 2, pp. 7–28, 2019, doi: 
https://doi.org/10.1016/j.mne.2018.11.005. 

[10]       A. van Etten, “Satellite Imagery Multiscale Rapid 
Detection with Windowed Networks,” in 2019 
IEEE Winter Conference on Applications of 
Computer Vision (WACV), Jan. 2019, pp. 735–743, 
doi: 10.1109/WACV.2019.00083. 

[11]       J. Shermeyer and A. van Etten, “The Effects of 
Super-Resolution on Object Detection Performance 
in Satellite Imagery,” CoRR, vol. abs/1812.04098, 
2018, [Online]. Available: 
http://arxiv.org/abs/1812.04098. 

[12]       B. K. Gunturk, A. U. Batur, Y. Altunbasak, M. H. 
Hayes, and R. M. Mersereau, “Eigenface-domain 
super-resolution for face recognition,” IEEE 
Transactions on Image Processing, vol. 12, no. 5, 
pp. 597–606, May 2003, doi: 
10.1109/TIP.2003.811513. 

[13]       F. Lin, C. Fookes, V. Chandran, and S. Sridharan, 
“Investigation into optical flow super-resolution for 
surveillance applications,” in WDIC 2005: APRS 
Workshop on Digital Image Computing: Workshop 
Proceedings:, 2005, pp. 73–78. 

[14]       W. W. W. Zou and P. C. Yuen, “Very low 
resolution face recognition problem,” in Image 
Processing, IEEE Transactions on, Apr. 2010, vol. 
21, pp. 1–6, doi: 10.1109/BTAS.2010.5634490. 

[15]       J. A. Parker, R. v Kenyon, and D. E. Troxel, 
“Comparison of Interpolating Methods for Image 
Resampling,” IEEE Transactions on Medical 
Imaging, vol. 2, no. 1, pp. 31–39, Mar. 1983, doi: 
10.1109/TMI.1983.4307610. 

[16]       P. Getreuer, “Linear methods for image 
interpolation,” Image Processing On Line, vol. 1, 
pp. 238–259, 2011. 



 44 

[17]       C. E. Duchon, “Lanczos filtering in one and two 
dimensions,” Journal of Applied Meteorology and 
Climatology, vol. 18, no. 8, pp. 1016–1022, 1979. 

[18]       K. I. Kim and Y. Kwon, “Single-Image Super-
Resolution Using Sparse Regression and Natural 
Image Prior,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 32, no. 6, 
pp. 1127–1133, Jun. 2010, doi: 
10.1109/TPAMI.2010.25. 

[19]       J. Yang, J. Wright, T. S. Huang, and Y. Ma, 
“Image super-resolution via sparse representation,” 
IEEE transactions on image processing, vol. 19, no. 
11, pp. 2861–2873, 2010. 

[20]       W. T. Freeman, T. R. Jones, and E. C. Pasztor, 
“Example-based super-resolution,” IEEE Computer 
Graphics and Applications, vol. 22, no. 2, pp. 56–
65, Mar. 2002, doi: 10.1109/38.988747. 

[21]       G. Freedman and R. Fattal, “Image and video 
upscaling from local self-examples,” ACM 
Transactions on Graphics (TOG), vol. 30, no. 2, pp. 
1–11, 2011. 

[22]       O. mac Aodha, N. D. F. Campbell, A. Nair, and G. 
J. Brostow, “Patch based synthesis for single depth 
image super-resolution,” in European conference 
on computer vision, 2012, pp. 71–84. 

[23]       H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-
resolution through neighbor embedding,” in 
Proceedings of the 2004 IEEE Computer Society 
Conference on Computer Vision and Pattern 
Recognition, 2004. CVPR 2004., 2004, vol. 1, pp. 
I–I. 

[24]       Y. Tai, S. Liu, M. S. Brown, and S. Lin, “Super 
resolution using edge prior and single image detail 
synthesis,” in 2010 IEEE Computer Society 
Conference on Computer Vision and Pattern 
Recognition, Jun. 2010, pp. 2400–2407, doi: 
10.1109/CVPR.2010.5539933. 

[25]       L. Wang, S. Xiang, G. Meng, H. Wu, and C. Pan, 
“Edge-Directed Single-Image Super-Resolution Via 
Adaptive Gradient Magnitude Self-Interpolation,” 
IEEE Transactions on Circuits and Systems for 
Video Technology, vol. 23, no. 8, pp. 1289–1299, 
Aug. 2013, doi: 10.1109/TCSVT.2013.2240915. 

[26]       D. Glasner, S. Bagon, and M. Irani, “Super-
resolution from a single image,” in 2009 IEEE 12th 
International Conference on Computer Vision, Sep. 
2009, pp. 349–356, doi: 
10.1109/ICCV.2009.5459271. 

[27]       C. Dong, C. C. Loy, K. He, and X. Tang, 
“Learning a deep convolutional network for image 
super-resolution,” in European conference on 
computer vision, 2014, pp. 184–199. 

[28]       C. Dong, C. C. Loy, and X. Tang, “Accelerating 
the Super-Resolution Convolutional Neural 
Network,” CoRR, vol. abs/1608.00367, 2016, 
[Online]. Available: 
http://arxiv.org/abs/1608.00367. 

[29]       J. Kim, J. K. Lee, and K. M. Lee, “Deeply-
Recursive Convolutional Network for Image Super-

Resolution,” Nov. 2015, [Online]. Available: 
http://arxiv.org/abs/1511.04491. 

[30]       J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image 
Super-Resolution Using Very Deep Convolutional 
Networks,” Nov. 2015, [Online]. Available: 
http://arxiv.org/abs/1511.04587. 

[31]       W. Shi et al., “Real-Time Single Image and Video 
Super-Resolution Using an Efficient Sub-Pixel 
Convolutional Neural Network,” CoRR, vol. 
abs/1609.05158, 2016, [Online]. Available: 
http://arxiv.org/abs/1609.05158. 

[32]       Z. Wang, J. Chen, and S. C. H. Hoi, “Deep 
Learning for Image Super-resolution: A Survey,” 
Feb. 2019, [Online]. Available: 
http://arxiv.org/abs/1902.06068. 

[33]       C. Ledig et al., “Photo-Realistic Single Image 
Super-Resolution Using a Generative Adversarial 
Network,” 2017. 

[34]       W. Sun and Z. Chen, “Learned Image Downscaling 
for Upscaling Using Content Adaptive Resampler,” 
IEEE Transactions on Image Processing, vol. 29, 
pp. 4027–4040, Apr. 2020, doi: 
10.1109/TIP.2020.2970248. 

[35]       W. Yang, X. Zhang, Y. Tian, W. Wang, and J.-H. 
Xue, “Deep Learning for Single Image Super-
Resolution: A Brief Review,” Aug. 2018, doi: 
10.1109/TMM.2019.2919431. 

[36]       J. Tian and K.-K. Ma, “A survey on super-
resolution imaging,” Signal, Image and Video 
Processing, vol. 5, no. 3, pp. 329–342, 2011. 

[37]       J. D. van Ouwerkerk, “Image super-resolution 
survey,” Image and Vision Computing, vol. 24, no. 
10, pp. 1039–1052, 2006, doi: 
https://doi.org/10.1016/j.imavis.2006.02.026. 

[38]       K. Nasrollahi and T. B. Moeslund, “Super-
resolution: a comprehensive survey,” Machine 
Vision and Applications, vol. 25, no. 6, pp. 1423–
1468, 2014, doi: 10.1007/s00138-014-0623-4. 

[39]       Sung Cheol Park, Min Kyu Park, and Moon Gi 
Kang, “Super-resolution image reconstruction: a 
technical overview,” IEEE Signal Processing 
Magazine, vol. 20, no. 3, pp. 21–36, May 2003, doi: 
10.1109/MSP.2003.1203207. 

[40]       Q. Ye and D. Doermann, “Text Detection and 
Recognition in Imagery: A Survey,” IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence, vol. 37, no. 7, pp. 1480–1500, Jul. 
2015, doi: 10.1109/TPAMI.2014.2366765. 

[41]       A. Risnumawan, I. A. Sulistijono, and J. Abawajy, 
“Text detection in low resolution scene images 
using convolutional neural network,” in 
International Conference on Soft Computing and 
Data Mining, 2016, pp. 366–375. 

[42]       D. Han, “Comparison of Commonly Used Image 
Interpolation Methods,” 2013. 

[43]       K. Turkowski, “Filters for common resampling 
tasks,” Graphics Gems I, pp. 147–165, 1990. 

[44]       P. Parsania and D. Virparia, “A Comparative 
Analysis of Image Interpolation Algorithms,” 



 45 

IJARCCE, vol. 5, pp. 29–34, Apr. 2016, doi: 
10.17148/IJARCCE.2016.5107. 

[45]       C. Suresh, S. Singh, R. Saini, and A. K. Saini, “A 
Comparative Analysis of Image Scaling 
Algorithms,” International Journal of Image, 
Graphics and Signal Processing, vol. 5, no. 5, p. 
55, 2013. 

[46]       C. Dong, C. C. Loy, K. He, and X. Tang, “Image 
Super-Resolution Using Deep Convolutional 
Networks,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 38, pp. 295–307, 
2016, Accessed: Apr. 02, 2021. [Online]. Available: 
https://arxiv.org/pdf/1501.00092.pdf. 

[47]       K. Simonyan and A. Zisserman, “Very Deep 
Convolutional Networks for Large-Scale Image 
Recognition,” CoRR, vol. abs/1409.1556, 2015. 

[48]       W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, 
“Deep laplacian pyramid networks for fast and 
accurate super-resolution,” in Proceedings of the 
IEEE conference on computer vision and pattern 
recognition, 2017, pp. 624–632. 

[49]       P. Burt and E. Adelson, “The Laplacian Pyramid as 
a Compact Image Code,” IEEE Transactions on 
Communications, vol. 31, no. 4, pp. 532–540, Apr. 
1983, doi: 10.1109/TCOM.1983.1095851. 

[50]       B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, 
“Enhanced Deep Residual Networks for Single 
Image Super-Resolution.” 

[51]       X. Li and M. T. Orchard, “New Edge-Directed 
Interpolation,” 2001. 

[52]       N. Asuni and A. Giachetti, “Accuracy 
Improvements and Artifacts Removal in Edge 
Based Image Interpolation,” 2008. 

[53]       K. S. Reddy and D. K. R. L. Reddy, “Enlargement 
of image based upon Interpolation Techniques,” 
International Journal of Advanced Research in 
Computer and Communication Engineering, vol. 2, 
no. 12, p. 4631, 2013. 

[54]       A. Giachetti and N. Asuni, “Real-Time Artifact-
Free Image Upscaling,” IEEE Transactions on 
Image Processing, vol. 20, no. 10, pp. 2760–2768, 
Oct. 2011, doi: 10.1109/TIP.2011.2136352. 

[55]       R. Borse and P. Markad, “Competitive analysis of 
existing image quality assessment methods,” in 
2014 International Conference on Advances in 
Computing, Communications and Informatics 

(ICACCI), Sep. 2014, pp. 1440–1444, doi: 
10.1109/ICACCI.2014.6968385. 

[56]       Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. 
Simoncelli, “Image Quality Assessment: From 
Error Visibility to Structural Similarity,” 2004. 
[Online]. Available: 
http://www.cns.nyu.edu/~lcv/ssim/. 

[57]       L. Zhang, L. Zhang, X. Mou, and D. Zhang, 
“FSIM: A feature similarity index for image quality 
assessment,” IEEE Transactions on Image 
Processing, vol. 20, no. 8, pp. 2378–2386, Aug. 
2011, doi: 10.1109/TIP.2011.2109730. 

[58]       R. Jain, R. Kasturi, and B. G. Schunck, Machine 
vision, vol. 5. McGraw-hill New York, 1995. 

[59]       B. Jähne, H. Haussecker, and P. Geissler, 
Handbook of computer vision and applications, vol. 
2. Citeseer, 1999. 

[60]       R. Zeyde, M. Elad, and M. Protter, “On single 
image scale-up using sparse-representations,” in 
International conference on curves and surfaces, 
2010, pp. 711–730. 

[61]       J.-B. Huang, A. Singh, and N. Ahuja, “Single 
Image Super-Resolution From Transformed Self-
Exemplars,” Jun. 2015. 

[62]       J.-B. Huang, A. Singh, and N. Ahuja, “Single 
image super-resolution from transformed self-
exemplars,” in Proceedings of the IEEE conference 
on computer vision and pattern recognition, 2015, 
pp. 5197–5206. 

[63]       J. Jung, S. Lee, M. S. Cho, and J. H. Kim, “Touch 
TT: Scene Text Extractor Using Touchscreen 
Interface,” ETRI Journal, vol. 33, no. 1, pp. 78–88, 
2011, doi: 
https://doi.org/10.4218/etrij.11.1510.0029. 

[64]       S. Lee, M. S. Cho, K. Jung, and J. H. Kim, “Scene 
Text Extraction with Edge Constraint and Text 
Collinearity,” in 2010 20th International 
Conference on Pattern Recognition, Aug. 2010, pp. 
3983–3986, doi: 10.1109/ICPR.2010.969. 

[65]       M. Müller, N. Ekhtiari, R. M. Almeida, and C. 
Rieke, “Super-resolution of multispectral satellite 
images using convolutional neural networks,” 
ArXiv, vol. abs/2002.00580, 2020, Accessed: Apr. 
02, 2021. [Online]. Available: 
https://arxiv.org/pdf/2002.00580.pdf. 

 
 

 

 
 

  



 46 

IX. APPENDIX 
Table IX-1: List of program, algorithm and files used for this project 

 

Filename/Algorithm/ 
Package 

Supplier/Source/Author/website Use/Modifications made/ 
Student written 

EDSR_x#.pb (#=2, 3, 4) Saafke – Github /  
TensorFlow model save file. (python) 
https://github.com/Saafke/EDSR_Tensorflow   

EDSR pre-trained model for benchmark by 
loading with TensorFlow. 

ESPCN_x#.pb (#=2, 3, 4) Fannymonori – Github / 
TensorFlow model save file. (python) 
https://github.com/fannymonori/TF-ESPCN  

ESPCN pre-trained model  for benchmark by 
loading with TensorFlow. 

FSRCNN_x#.pb  
(#=2, 3 ,4) 

Saafke – Github / 
TensorFlow model save file. (python) 
https://github.com/fannymonori/TF-ESPCN  

FSRCNN pre-trained model for benchmark 
by loading with TensorFlow. 

LapSRN_x#.pb (#=2, 4, 8) Fannymonori – Github / 
TensorFlow model save file. (python) 
https://github.com/fannymonori/TF-LapSRN  

LapSRN pre-trained model for benchmark 
by loading with TensorFlow. 

DRCN (Package) Jiny2001 – Github / 
(TensorFlow - python) 
https://github.com/jiny2001/deeply-
recursive-cnn-tf  

DRCNN model implementation with full 
source codes and pre-trained model used 
for benchmark. 

VDSR (Package) twtygqyy – Github / 
(Pytorch – python) 
https://github.com/twtygqyy/pytorch-vdsr  

VDSR model implementation with full 
source codes and pre-trained model used 
for benchmark. 

iCBI (Package) http://www.andreagiachetti.it/icbi/ 
(MATLAB) 

iCBI implementation codes used for 
benchmark. 

iNEDI (Package) nicolaasuni – Github / 
(MATLAB) 
https://github.com/tecnickcom/inedi  

iNEDI implementation codes used for 
benchmark. 

PyQt5 ( Library ) Python library PyQt5 library is used for building GUI Front-
End views. 

PIL ( Library ) Python library PIL library is used to save image. 
OpenCV2 ( Library ) Python library CV2 library is used for loading, processing 

image and loading TensorFlow saved 
Images. 

Numpy ( Library ) Python library Numpy library provides efficient tools to 
process arrays, matrices and vectors. 

Pandas ( Library ) Python library Pandas library is used to handle data in 
table format and ease to save in csv. 

Image_similarity_measure 
( Library ) 

Python library Image-similarity-measure library provides 
functions of Image Quality Assessment 
methods. 

Matplotlib ( Library ) Python library Matplotlib provides data visualization tool 
almost identical to MATLAB. This library is 
used to check process of benchmark. 

Plotly ( Library ) Python library Plotly is used to visualizing final IQA results 
along with PyQt5 on GUI. 

Sisr_project/src/{backend_a
pi, frontend_ui} 
 

Written codes by Jongyoon Kim This directory is written by Jongyoon Kim 
and non-code files are temporary results 
during code implementations. 

.ui files in 
sisr_project/src/frontend_ui
/ui 

UI files designed by Jongyoon Kim The ui files are produced by building GUI 
designs by Jongyoon Kim. 
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Table IX-2: IQA metrics of Set5, scale factor 2

image iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

baby  

FSIM 0.721 0.752 0.751 0.746 0.767 0.7 0.748 0.707 0.734 0.684 0.661 0.75 0.748 0.745 0.747 ICBI 

PSNR 53.904 55.842 55.793 55.51 57.697 54.089 55.709 48.794 49.306 48.485 47.781 55.755 55.94 55.647 53.991 ICBI 

RMSE 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.004 0.003 0.004 0.004 0.002 0.002 0.002 0.002 ICBI 

SSIM 0.996 0.997 0.997 0.997 0.998 0.996 0.997 0.991 0.992 0.99 0.987 0.997 0.997 0.997 0.996 ICBI 

bird  

FSIM 0.771 0.797 0.792 0.788 0.778 0.73 0.787 0.734 0.749 0.715 0.703 0.79 0.792 0.785 0.785 EDSR 

PSNR 52.439 54.273 54.114 53.898 55.857 51.887 53.874 47.511 47.854 47.162 46.783 54.046 53.967 54.048 51.846 ICBI 

RMSE 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.004 0.004 0.004 0.005 0.002 0.002 0.002 0.003 ICBI 

SSIM 0.994 0.996 0.996 0.995 0.997 0.992 0.996 0.977 0.978 0.976 0.975 0.996 0.996 0.996 0.993 ICBI 

butterfly  

FSIM 0.668 0.738 0.724 0.718 0.722 0.664 0.715 0.669 0.698 0.636 0.637 0.703 0.721 0.687 0.718 EDSR 

PSNR 44.751 47.85 47.942 47.676 50.491 44.597 47.656 43.115 44.241 42.66 42.043 47.329 47.284 47.19 45.232 ICBI 

RMSE 0.006 0.004 0.004 0.004 0.003 0.006 0.004 0.007 0.006 0.007 0.008 0.004 0.004 0.004 0.005 ICBI 

SSIM 0.973 0.987 0.987 0.986 0.992 0.971 0.986 0.958 0.968 0.955 0.949 0.985 0.984 0.984 0.976 ICBI 

head  

FSIM 0.629 0.683 0.686 0.679 0.7 0.647 0.676 0.618 0.656 0.594 0.574 0.682 0.695 0.669 0.677 ICBI 

PSNR 51.084 52.969 53.178 53.038 53.932 52.296 53.143 49.564 50.992 48.779 48.114 52.864 53.413 52.637 51.857 ICBI 

RMSE 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.002 0.002 0.002 0.003 ICBI 

SSIM 0.991 0.994 0.994 0.994 0.995 0.993 0.994 0.986 0.99 0.984 0.982 0.994 0.995 0.994 0.993 ICBI 

woman  

FSIM 0.716 0.765 0.763 0.758 0.8 0.731 0.755 0.717 0.745 0.691 0.682 0.753 0.759 0.744 0.755 ICBI 

PSNR 48.242 50.896 51.048 50.742 55.212 49.637 50.856 46.934 48.323 46.321 45.621 50.874 51.02 50.749 48.967 ICBI 

RMSE 0.004 0.003 0.003 0.003 0.002 0.003 0.003 0.005 0.004 0.005 0.005 0.003 0.003 0.003 0.004 ICBI 

SSIM 0.987 0.993 0.993 0.992 0.997 0.99 0.993 0.982 0.987 0.979 0.976 0.992 0.993 0.992 0.989 ICBI 

 
 

Table IX-3: IQA metrics of Set5, scale factor 3

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

baby  

FSIM 0.638 0.635 0.634 0.63 
   

0.613 0.627 0.59 0.534 0.641 0.639 0.638 0.545 bicubic 

PSNR 51.352 51.679 51.743 51.59 
   

47.317 47.995 46.626 46.451 51.622 51.883 51.498 50.166 bilinear 

RMSE 0.003 0.003 0.003 0.003 
   

0.004 0.004 0.005 0.005 0.003 0.003 0.003 0.003 bilinear 

SSIM 0.993 0.993 0.993 0.993 
   

0.985 0.988 0.982 0.981 0.993 0.993 0.993 0.99 bilinear 

bird  

FSIM 0.678 0.692 0.682 0.682 
   

0.635 0.653 0.613 0.554 0.682 0.686 0.677 0.579 EDSR 

PSNR 48.986 49.31 49.309 49.262 
   

45.234 46.1 44.702 44.698 49.284 49.483 49.184 47.681 bilinear 

RMSE 0.004 0.003 0.003 0.003 
   

0.005 0.005 0.006 0.006 0.003 0.003 0.003 0.004 bilinear 

SSIM 0.986 0.987 0.986 0.986 
   

0.965 0.969 0.962 0.962 0.986 0.987 0.986 0.982 bilinear 

butterfly  

FSIM 0.601 0.639 0.633 0.637 
   

0.556 0.609 0.505 0.514 0.613 0.627 0.598 0.507 EDSR 

PSNR 42.546 43.367 43.601 43.702 
   

40.2 41.598 39.485 39.611 43.232 43.472 43.058 41.62 FSRCNN 

RMSE 0.007 0.007 0.007 0.007 
   

0.01 0.008 0.011 0.01 0.007 0.007 0.007 0.008 FSRCNN 

SSIM 0.955 0.963 0.964 0.965 
   

0.922 0.942 0.909 0.913 0.961 0.962 0.959 0.945 FSRCNN 

head  

FSIM 0.593 0.593 0.594 0.584 
   

0.556 0.583 0.535 0.507 0.597 0.603 0.589 0.521 bilinear 

PSNR 50.279 50.808 50.935 50.728 
   

48.068 49.389 47.433 47.553 50.543 50.971 50.35 49.549 bilinear 

RMSE 0.003 0.003 0.003 0.003 
   

0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 bilinear 

SSIM 0.989 0.99 0.99 0.989 
   

0.98 0.985 0.978 0.979 0.989 0.99 0.989 0.987 bilinear 

woman  

FSIM 0.646 0.663 0.654 0.652 
   

0.618 0.647 0.584 0.55 0.652 0.657 0.644 0.549 EDSR 

PSNR 46.117 46.546 46.74 46.645 
   

43.567 45.471 42.656 43.186 46.627 46.946 46.452 45.105 bilinear 

RMSE 0.005 0.005 0.005 0.005 
   

0.007 0.005 0.007 0.007 0.005 0.004 0.005 0.006 bilinear 

SSIM 0.978 0.98 0.981 0.98 
   

0.962 0.974 0.954 0.958 0.98 0.981 0.979 0.973 bilinear 
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Table IX-4: IQA metrics of Set5, scale factor 4 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

baby  

FSIM 0.56 0.559 0.557 0.552 0.646 0.536 0.557 0.545 0.555 0.544 0.447 0.564 0.563 0.563 0.442 ICBI 

PSNR 49.331 49.417 49.526 49.377 53.389 48.295 49.433 46.397 47.152 46.324 45.052 49.338 49.783 49.195 48.028 ICBI 

RMSE 0.003 0.003 0.003 0.003 0.002 0.004 0.003 0.005 0.004 0.005 0.006 0.003 0.003 0.003 0.004 ICBI 

SSIM 0.989 0.989 0.989 0.989 0.995 0.986 0.989 0.981 0.985 0.981 0.974 0.989 0.99 0.988 0.985 ICBI 

bird  

FSIM 0.604 0.61 0.605 0.602 0.686 0.572 0.608 0.567 0.586 0.563 0.453 0.605 0.612 0.602 0.464 ICBI 

PSNR 46.686 46.611 46.807 46.742 50.731 45.579 46.773 44.224 44.878 44.185 43.114 46.687 47.074 46.585 45.357 ICBI 

RMSE 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.006 0.006 0.006 0.007 0.005 0.004 0.005 0.005 ICBI 

SSIM 0.975 0.975 0.975 0.975 0.991 0.967 0.975 0.954 0.959 0.954 0.947 0.975 0.977 0.975 0.968 ICBI 

butterfly  

FSIM 0.561 0.576 0.579 0.576 0.621 0.498 0.575 0.526 0.561 0.5 0.447 0.561 0.568 0.553 0.409 ICBI 

PSNR 41.216 41.148 41.708 41.574 44.269 38.67 41.493 39.274 40.547 38.981 38.248 41.265 41.68 41.097 39.838 ICBI 

RMSE 0.009 0.009 0.008 0.008 0.006 0.012 0.008 0.011 0.009 0.011 0.012 0.009 0.008 0.009 0.01 ICBI 

SSIM 0.938 0.939 0.945 0.943 0.969 0.894 0.942 0.903 0.926 0.896 0.884 0.939 0.943 0.937 0.918 ICBI 

head  

FSIM 0.535 0.527 0.528 0.521 0.584 0.503 0.527 0.518 0.531 0.513 0.461 0.536 0.54 0.534 0.448 ICBI 

PSNR 49.256 49.526 49.691 49.574 51.489 48.496 49.668 47.69 48.663 47.511 46.485 49.252 49.855 49.068 48.28 ICBI 

RMSE 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.004 0.005 0.003 0.003 0.004 0.004 ICBI 

SSIM 0.985 0.986 0.986 0.986 0.991 0.981 0.986 0.977 0.982 0.977 0.972 0.985 0.987 0.984 0.982 ICBI 

woman  

FSIM 0.589 0.599 0.589 0.58 0.666 0.559 0.587 0.563 0.592 0.552 0.467 0.589 0.597 0.584 0.443 ICBI 

PSNR 44.383 44.413 44.697 44.486 48.238 43.393 44.534 42.314 44.098 42.177 41.514 44.444 44.982 44.269 43.081 ICBI 

RMSE 0.006 0.006 0.006 0.006 0.004 0.007 0.006 0.008 0.006 0.008 0.008 0.006 0.006 0.006 0.007 ICBI 

SSIM 0.967 0.968 0.969 0.968 0.987 0.96 0.968 0.95 0.965 0.948 0.94 0.968 0.971 0.967 0.957 ICBI 

 
 
Table IX-5: IQA metrics of Set5, scale factor 8  

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

baby  

FSIM 
    

0.515 0.438 
 

0.453 0.445 0.453 0.353 0.454 0.448 0.453 0.305 ICBI 

PSNR 
    

48.518 44.233 
 

44.188 44.546 44.089 43.021 45.059 45.553 44.929 43.935 ICBI 

RMSE 
    

0.004 0.006 
 

0.006 0.006 0.006 0.007 0.006 0.005 0.006 0.006 ICBI 

SSIM 
    

0.985 0.968 
 

0.969 0.973 0.968 0.96 0.973 0.976 0.972 0.965 ICBI 

bird  

FSIM 
    

0.542 0.435 
 

0.445 0.44 0.443 0.344 0.46 0.456 0.458 0.315 ICBI 

PSNR 
    

45.503 41.635 
 

41.813 42.109 41.713 40.824 42.541 43.046 42.399 41.533 ICBI 

RMSE 
    

0.005 0.008 
 

0.008 0.008 0.008 0.009 0.007 0.007 0.008 0.008 ICBI 

SSIM 
    

0.969 0.92 
 

0.919 0.925 0.918 0.907 0.933 0.94 0.931 0.922 ICBI 

butterfly  

FSIM 
    

0.47 0.384 
 

0.422 0.422 0.416 0.364 0.427 0.427 0.42 0.28 ICBI 

PSNR 
    

39.162 35.735 
 

37.307 37.767 37.123 36.076 37.599 38.129 37.394 36.504 ICBI 

RMSE 
    

0.011 0.016 
 

0.014 0.013 0.014 0.016 0.013 0.012 0.013 0.015 ICBI 

SSIM 
    

0.908 0.82 
 

0.856 0.872 0.849 0.822 0.872 0.883 0.866 0.842 ICBI 

head  

FSIM 
    

0.478 0.436 
 

0.437 0.445 0.426 0.37 0.437 0.45 0.425 0.345 ICBI 

PSNR 
    

49.067 45.43 
 

45.781 46.227 45.648 44.692 46.343 46.907 46.185 45.447 ICBI 

RMSE 
    

0.004 0.005 
 

0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.005 ICBI 

SSIM 
    

0.982 0.96 
 

0.961 0.967 0.96 0.955 0.967 0.972 0.965 0.962 ICBI 

woman  

FSIM 
    

0.547 0.426 
 

0.454 0.455 0.449 0.366 0.459 0.461 0.453 0.298 ICBI 

PSNR 
    

43.664 39.844 
 

40.261 40.822 40.111 38.993 40.579 41.184 40.411 39.446 ICBI 

RMSE 
    

0.007 0.01 
 

0.01 0.009 0.01 0.011 0.009 0.009 0.01 0.011 ICBI 

SSIM 
    

0.963 0.918 
 

0.922 0.931 0.919 0.901 0.928 0.936 0.926 0.911 ICBI 
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Table IX-6: IQA metrics of Set14, scale factor 2 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

baboon  

FSIM 0.593 0.636 0.641 0.637 0.654 0.597 0.639 0.592 0.621 0.58 0.552 0.634 0.636 0.624 0.631 ICBI 

PSNR 42.062 44.179 44.486 44.314 44.627 43.315 44.487 41.279 42.767 41.219 39.673 44.24 44.81 43.969 43.46 bilinear 

RMSE 0.008 0.006 0.006 0.006 0.006 0.007 0.006 0.009 0.007 0.009 0.01 0.006 0.006 0.006 0.007 bilinear 

SSIM 0.944 0.964 0.966 0.965 0.967 0.955 0.966 0.924 0.941 0.923 0.899 0.964 0.968 0.962 0.958 bilinear 

barbara  

FSIM 0.675 0.714 0.707 0.701 0.72 0.668 0.705 0.667 0.688 0.642 0.625 0.704 0.711 0.695 0.707 ICBI 

PSNR 44.911 47.49 47.699 47.385 48.083 46.827 47.889 44.208 45.87 43.648 42.731 47.829 48.446 47.493 46.88 bilinear 

RMSE 0.006 0.004 0.004 0.004 0.004 0.005 0.004 0.006 0.005 0.007 0.007 0.004 0.004 0.004 0.005 bilinear 

SSIM 0.971 0.983 0.983 0.982 0.985 0.98 0.984 0.962 0.973 0.958 0.95 0.984 0.986 0.983 0.98 bilinear 

bridge  

FSIM 0.627 0.685 0.679 0.671 0.71 0.623 0.674 0.634 0.671 0.605 0.58 0.676 0.673 0.662 0.679 ICBI 

PSNR 45.386 48.084 48.094 47.849 49.128 46.509 48.029 45.322 47.486 44.934 43.03 47.963 48.379 47.726 46.789 ICBI 

RMSE 0.005 0.004 0.004 0.004 0.003 0.005 0.004 0.005 0.004 0.006 0.007 0.004 0.004 0.004 0.005 ICBI 

SSIM 0.972 0.985 0.985 0.984 0.988 0.978 0.984 0.972 0.982 0.969 0.953 0.984 0.985 0.983 0.979 ICBI 

coastguard  

FSIM 0.626 0.673 0.676 0.67 0.719 0.596 0.667 0.639 0.655 0.597 0.561 0.669 0.654 0.647 0.682 ICBI 

PSNR 46.643 49.327 49.599 49.373 51.477 47.002 49.553 46.646 48.527 45.918 44.44 49.606 49.854 49.359 48.204 ICBI 

RMSE 0.005 0.003 0.003 0.003 0.003 0.004 0.003 0.005 0.004 0.005 0.006 0.003 0.003 0.003 0.004 ICBI 

SSIM 0.979 0.988 0.989 0.988 0.993 0.98 0.989 0.978 0.986 0.974 0.965 0.989 0.99 0.988 0.985 ICBI 

comic  

FSIM 0.651 0.723 0.715 0.708 0.732 0.666 0.708 0.654 0.69 0.63 0.612 0.707 0.712 0.693 0.707 ICBI 

PSNR 43.164 46.033 46.306 46.033 47.582 44.498 46.179 42.801 44.624 42.486 41.038 46.091 46.297 45.868 44.518 ICBI 

RMSE 0.007 0.005 0.005 0.005 0.004 0.006 0.005 0.007 0.006 0.008 0.009 0.005 0.005 0.005 0.006 ICBI 

SSIM 0.959 0.978 0.979 0.977 0.984 0.968 0.978 0.955 0.97 0.952 0.936 0.978 0.978 0.977 0.969 ICBI 

face 

FSIM 0.633 0.687 0.689 0.682 0.702 0.652 0.678 0.621 0.658 0.598 0.577 0.686 0.698 0.672 0.681 ICBI 

PSNR 51.048 52.939 53.142 53.002 53.919 52.255 53.106 49.532 50.965 48.747 48.082 52.829 53.377 52.603 51.821 ICBI 

RMSE 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.002 0.002 0.002 0.003 ICBI 

SSIM 0.991 0.994 0.994 0.994 0.995 0.993 0.994 0.986 0.99 0.984 0.982 0.994 0.995 0.994 0.993 ICBI 

flowers 

FSIM 0.669 0.728 0.722 0.716 0.723 0.66 0.718 0.663 0.695 0.639 0.62 0.716 0.721 0.703 0.714 EDSR 

PSNR 47.318 49.83 49.806 49.602 50.915 47.549 49.745 45.387 46.526 44.944 43.976 49.633 49.785 49.462 47.949 ICBI 

RMSE 0.004 0.003 0.003 0.003 0.003 0.004 0.003 0.005 0.005 0.006 0.006 0.003 0.003 0.003 0.004 ICBI 

SSIM 0.983 0.99 0.99 0.99 0.992 0.983 0.99 0.971 0.977 0.968 0.962 0.99 0.99 0.989 0.985 ICBI 

foreman 

FSIM 0.728 0.776 0.768 0.766 0.781 0.706 0.766 0.723 0.75 0.688 0.682 0.762 0.766 0.754 0.768 ICBI 

PSNR 49.644 52.12 52.012 51.841 53.299 49.764 51.918 48.905 50.402 48.05 47.819 51.941 51.917 51.893 50.562 ICBI 

RMSE 0.003 0.002 0.003 0.003 0.002 0.003 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 ICBI 

SSIM 0.993 0.996 0.996 0.996 0.998 0.993 0.996 0.991 0.994 0.989 0.988 0.996 0.996 0.996 0.994 ICBI 

lenna 

FSIM 0.654 0.707 0.705 0.698 0.718 0.665 0.701 0.638 0.679 0.598 0.587 0.698 0.708 0.687 0.699 ICBI 

PSNR 50.948 53.137 53.241 52.986 54.729 52.435 53.202 46.546 47.352 46.147 45.48 53.053 53.416 52.872 51.653 ICBI 

RMSE 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.004 0.005 0.005 0.002 0.002 0.002 0.003 ICBI 

SSIM 0.992 0.995 0.995 0.995 0.996 0.994 0.995 0.98 0.984 0.978 0.974 0.995 0.995 0.995 0.993 ICBI 

man 

FSIM 0.637 0.701 0.699 0.691 0.732 0.665 0.695 0.646 0.681 0.613 0.595 0.69 0.697 0.68 0.685 ICBI 

PSNR 46.534 49.302 49.399 49.131 50.797 48.416 49.318 46.631 48.715 46.012 44.725 49.239 49.621 49.023 47.986 ICBI 

RMSE 0.005 0.003 0.003 0.003 0.003 0.004 0.003 0.005 0.004 0.005 0.006 0.003 0.003 0.004 0.004 ICBI 

SSIM 0.978 0.988 0.988 0.987 0.991 0.985 0.988 0.978 0.986 0.975 0.968 0.987 0.988 0.987 0.984 ICBI 

monarch 

FSIM 0.726 0.776 0.768 0.764 0.762 0.705 0.762 0.715 0.743 0.679 0.666 0.756 0.767 0.746 0.758 EDSR 

PSNR 49.96 52.82 52.964 52.698 55.479 49.647 52.79 46.821 47.647 46.406 45.913 52.43 52.438 52.309 50.374 ICBI 

RMSE 0.003 0.002 0.002 0.002 0.002 0.003 0.002 0.005 0.004 0.005 0.005 0.002 0.002 0.002 0.003 ICBI 

SSIM 0.992 0.995 0.996 0.995 0.997 0.991 0.995 0.979 0.983 0.978 0.976 0.995 0.995 0.995 0.992 ICBI 

pepper 

FSIM 0.663 0.712 0.709 0.704 0.701 0.661 0.707 0.652 0.682 0.623 0.624 0.705 0.715 0.692 0.703 bilinear 

PSNR 49.757 51.534 51.577 51.431 52.879 50.389 51.679 45.53 45.943 45.199 45.038 51.461 51.807 51.342 50.07 ICBI 

RMSE 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.005 0.005 0.005 0.006 0.003 0.003 0.003 0.003 ICBI 

SSIM 0.992 0.994 0.994 0.994 0.995 0.992 0.994 0.96 0.962 0.958 0.958 0.994 0.995 0.994 0.992 ICBI 

ppt3 

FSIM 0.668 0.74 0.725 0.714 0.719 0.67 0.71 0.665 0.689 0.634 0.644 0.728 0.735 0.685 0.747 nearest 

PSNR 44.817 46.641 46.685 46.349 49.244 45.591 46.549 43.716 44.541 43.498 42.825 46.48 46.458 46.414 44.718 ICBI 

RMSE 0.006 0.005 0.005 0.005 0.003 0.005 0.005 0.007 0.006 0.007 0.007 0.005 0.005 0.005 0.006 ICBI 

SSIM 0.977 0.984 0.984 0.983 0.991 0.98 0.984 0.968 0.972 0.966 0.962 0.983 0.983 0.983 0.977 ICBI 

zebra  

FSIM 0.705 0.751 0.747 0.743 0.785 0.693 0.743 0.708 0.733 0.67 0.667 0.743 0.735 0.737 0.74 ICBI 

PSNR 47.039 49.179 49.142 48.88 53.282 47.127 49.179 45.45 46.538 44.474 44.188 49.204 49.183 49.134 47.218 ICBI 

RMSE 0.004 0.003 0.003 0.004 0.002 0.004 0.003 0.005 0.005 0.006 0.006 0.003 0.003 0.003 0.004 ICBI 

SSIM 0.982 0.988 0.988 0.988 0.995 0.981 0.989 0.975 0.98 0.968 0.967 0.988 0.988 0.988 0.983 ICBI 
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Table IX-7: IQA metrics of Set14, scale factor 3 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

baboon  

FSIM 0.535 0.52 0.518 0.517 
   

0.515 0.524 0.503 0.481 0.534 0.523 0.536 0.455 lanczos 

PSNR 42.086 42.66 42.874 42.738 
   

39.62 41.513 39.308 39.812 42.314 42.79 42.1 41.601 ESPCN 

RMSE 0.008 0.007 0.007 0.007 
   

0.01 0.008 0.011 0.01 0.008 0.007 0.008 0.008 ESPCN 

SSIM 0.941 0.947 0.95 0.948 
   

0.892 0.923 0.885 0.896 0.943 0.949 0.941 0.935 ESPCN 

barbara  

FSIM 0.586 0.583 0.584 0.582 
   

0.566 0.577 0.546 0.506 0.589 0.588 0.587 0.506 bicubic 

PSNR 45.151 44.993 45.598 45.432 
   

42.242 44.597 41.767 42.652 45.419 45.851 45.241 44.502 bilinear 

RMSE 0.006 0.006 0.005 0.005 
   

0.008 0.006 0.008 0.007 0.005 0.005 0.005 0.006 bilinear 

SSIM 0.97 0.969 0.973 0.972 
   

0.942 0.964 0.937 0.946 0.972 0.974 0.971 0.966 bilinear 

bridge  

FSIM 0.556 0.549 0.543 0.539 
   

0.53 0.55 0.507 0.492 0.558 0.551 0.558 0.486 bicubic 

PSNR 44.825 45.402 45.64 45.539 
   

42.811 45.059 42.06 42.635 45.211 45.607 45.006 44.221 ESPCN 

RMSE 0.006 0.005 0.005 0.005 
   

0.007 0.006 0.008 0.007 0.005 0.005 0.006 0.006 ESPCN 

SSIM 0.968 0.972 0.973 0.973 
   

0.951 0.97 0.942 0.948 0.971 0.973 0.969 0.964 ESPCN 

coastguard  

FSIM 0.521 0.497 0.501 0.501 
   

0.523 0.517 0.514 0.476 0.531 0.513 0.537 0.473 lanczos 

PSNR 45.865 46.675 46.74 46.752 
   

44.137 46.081 43.582 44.012 46.329 46.745 46.118 45.414 FSRCN
N 

RMSE 0.005 0.005 0.005 0.005 
   

0.006 0.005 0.007 0.006 0.005 0.005 0.005 0.005 FSRCN
N 

SSIM 0.975 0.979 0.979 0.979 
   

0.963 0.976 0.958 0.962 0.977 0.979 0.976 0.973 ESPCN 

comic  

FSIM 0.585 0.586 0.59 0.589 
   

0.541 0.585 0.513 0.499 0.595 0.594 0.586 0.502 bicubic 

PSNR 42.118 42.471 42.87 42.853 
   

39.875 41.964 39.357 39.758 42.538 42.891 42.346 41.343 bilinear 

RMSE 0.008 0.008 0.007 0.007 
   

0.01 0.008 0.011 0.01 0.007 0.007 0.008 0.009 bilinear 

SSIM 0.947 0.951 0.954 0.954 
   

0.915 0.945 0.905 0.913 0.951 0.954 0.949 0.937 bilinear 

face 

FSIM 0.589 0.591 0.592 0.582 
   

0.554 0.575 0.532 0.5 0.596 0.601 0.588 0.516 bilinear 

PSNR 50.257 50.736 50.895 50.724 
   

48.118 49.344 47.452 47.523 50.519 50.953 50.324 49.53 bilinear 

RMSE 0.003 0.003 0.003 0.003 
   

0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 bilinear 

SSIM 0.989 0.99 0.99 0.989 
   

0.98 0.985 0.978 0.978 0.989 0.99 0.989 0.987 bilinear 

flowers 

FSIM 0.592 0.606 0.601 0.601    0.555 0.586 0.531 0.504 0.6 0.602 0.592 0.509 EDSR 

PSNR 45.439 45.881 46.137 46.092    42.829 44.314 42.215 42.405 45.871 46.182 45.692 44.554 bilinear 

RMSE 0.005 0.005 0.005 0.005    0.007 0.006 0.008 0.008 0.005 0.005 0.005 0.006 bilinear 

SSIM 0.973 0.976 0.977 0.976    0.95 0.963 0.944 0.946 0.976 0.977 0.975 0.968 bilinear 

foreman 

FSIM 0.649 0.663 0.655 0.657 
   

0.617 0.651 0.589 0.546 0.658 0.662 0.653 0.537 EDSR 

PSNR 48.348 48.413 48.708 48.665 
   

45.828 47.844 45.116 45.376 48.894 49.002 48.831 47.31 bilinear 

RMSE 0.004 0.004 0.004 0.004 
   

0.005 0.004 0.006 0.005 0.004 0.004 0.004 0.004 bilinear 

SSIM 0.99 0.991 0.991 0.991 
   

0.982 0.989 0.978 0.978 0.991 0.992 0.991 0.987 bilinear 

lenna 

FSIM 0.589 0.595 0.591 0.589 
   

0.555 0.584 0.532 0.5 0.595 0.6 0.589 0.517 bilinear 

PSNR 49.383 49.744 49.911 49.76 
   

45.006 46.193 44.499 44.761 49.732 50.118 49.558 48.529 bilinear 

RMSE 0.003 0.003 0.003 0.003 
   

0.006 0.005 0.006 0.006 0.003 0.003 0.003 0.004 bilinear 

SSIM 0.988 0.989 0.99 0.989 
   

0.971 0.978 0.968 0.969 0.989 0.99 0.989 0.986 bilinear 

man 

FSIM 0.578 0.587 0.586 0.583 
   

0.548 0.582 0.52 0.493 0.587 0.588 0.581 0.501 bilinear 

PSNR 45.769 46.388 46.567 46.463 
   

43.845 46.055 43.038 43.654 46.27 46.639 46.097 45.142 bilinear 

RMSE 0.005 0.005 0.005 0.005 
   

0.006 0.005 0.007 0.007 0.005 0.005 0.005 0.006 bilinear 

SSIM 0.972 0.975 0.976 0.975 
   

0.959 0.973 0.952 0.957 0.974 0.976 0.973 0.968 bilinear 

monarch 

FSIM 0.661 0.684 0.673 0.674 
   

0.635 0.657 0.612 0.551 0.664 0.671 0.656 0.558 EDSR 

PSNR 47.635 48.36 48.541 48.571 
   

44.568 45.7 43.954 43.884 48.212 48.468 48.047 46.63 FSRCN 

RMSE 0.004 0.004 0.004 0.004 
   

0.006 0.005 0.006 0.006 0.004 0.004 0.004 0.005 FSRCN 

SSIM 0.985 0.988 0.988 0.988 
   

0.968 0.974 0.964 0.964 0.987 0.988 0.987 0.982 FSRCN 

pepper 

FSIM 0.609 0.624 0.618 0.618 
   

0.572 0.601 0.545 0.515 0.617 0.625 0.607 0.531 bilinear 

PSNR 47.788 48.218 48.266 48.259 
   

44.13 44.699 43.601 43.758 48.155 48.408 48.045 46.992 bilinear 

RMSE 0.004 0.004 0.004 0.004 
   

0.006 0.006 0.007 0.006 0.004 0.004 0.004 0.004 bilinear 

SSIM 0.987 0.988 0.988 0.988 
   

0.951 0.956 0.948 0.95 0.988 0.988 0.987 0.984 bilinear 

ppt3 

FSIM 0.589 0.625 0.595 0.598 
   

0.562 0.584 0.535 0.528 0.612 0.624 0.579 0.565 EDSR 

PSNR 41.717 42.179 42.442 42.479 
   

40.483 41.465 40.266 40.077 42.395 42.593 42.311 41.178 bilinear 

RMSE 0.008 0.008 0.008 0.008 
   

0.009 0.008 0.01 0.01 0.008 0.007 0.008 0.009 bilinear 

SSIM 0.954 0.958 0.959 0.959 
   

0.937 0.947 0.934 0.933 0.958 0.959 0.958 0.949 bilinear 

zebra  

FSIM 0.626 0.629 0.616 0.614 
   

0.601 0.62 0.578 0.529 0.631 0.623 0.631 0.537 bicubic 

PSNR 44.138 44.61 44.702 44.732 
   

42.068 43.395 41.504 41.399 44.715 44.898 44.609 43.218 bilinear 

RMSE 0.006 0.006 0.006 0.006 
   

0.008 0.007 0.008 0.009 0.006 0.006 0.006 0.007 bilinear 

SSIM 0.964 0.967 0.968 0.968 
   

0.945 0.958 0.938 0.937 0.968 0.968 0.967 0.957 bilinear 
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Table IX-8: IQA metrics of Set14, scale factor 4 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

baboon  

FSIM 0.466 0.451 0.446 0.442 0.492 0.427 0.445 0.477 0.448 0.477 0.442 0.47 0.447 0.479 0.383 ICBI 

PSNR 41.565 41.967 42.171 42.068 42.105 41.113 42.139 39.244 41.287 39.279 39.338 41.524 42.205 41.305 40.834 bilinear 

RMSE 0.008 0.008 0.008 0.008 0.008 0.009 0.008 0.011 0.009 0.011 0.011 0.008 0.008 0.009 0.009 bilinear 

SSIM 0.932 0.937 0.94 0.939 0.94 0.923 0.94 0.88 0.918 0.881 0.884 0.931 0.941 0.928 0.922 bilinear 

barbara  

FSIM 0.521 0.518 0.522 0.519 0.569 0.493 0.522 0.507 0.516 0.506 0.443 0.52 0.521 0.52 0.424 ICBI 

PSNR 44.312 43.946 44.763 44.606 45.46 43.658 44.642 41.465 44.146 41.667 41.74 44.314 45.019 44.004 43.384 ICBI 

RMSE 0.006 0.006 0.006 0.006 0.005 0.007 0.006 0.008 0.006 0.008 0.008 0.006 0.006 0.006 0.007 ICBI 

SSIM 0.964 0.961 0.967 0.966 0.973 0.959 0.967 0.933 0.96 0.935 0.936 0.964 0.969 0.962 0.956 ICBI 

bridge  

FSIM 0.483 0.463 0.463 0.458 0.527 0.425 0.461 0.482 0.472 0.483 0.434 0.482 0.469 0.489 0.399 ICBI 

PSNR 43.672 43.921 44.231 44.101 45.107 42.316 44.158 41.946 44.124 41.935 41.53 43.685 44.293 43.492 42.746 ICBI 

RMSE 0.007 0.006 0.006 0.006 0.006 0.008 0.006 0.008 0.006 0.008 0.008 0.007 0.006 0.007 0.007 ICBI 

SSIM 0.96 0.962 0.964 0.963 0.97 0.947 0.964 0.941 0.963 0.941 0.935 0.96 0.965 0.958 0.951 ICBI 

coastguard  

FSIM 0.441 0.421 0.41 0.412 0.443 0.389 0.402 0.448 0.427 0.45 0.43 0.442 0.423 0.454 0.389 lanczos 

PSNR 45.009 45.071 45.391 45.413 45.503 43.694 45.251 43.556 45.359 43.611 43.424 45.039 45.553 44.904 44.287 bilinear 

RMSE 0.006 0.006 0.005 0.005 0.005 0.007 0.005 0.007 0.005 0.007 0.007 0.006 0.005 0.006 0.006 bilinear 

SSIM 0.97 0.971 0.973 0.973 0.975 0.959 0.972 0.958 0.972 0.958 0.957 0.97 0.974 0.969 0.966 ICBI 

comic  

FSIM 0.523 0.505 0.513 0.509 0.579 0.476 0.508 0.499 0.519 0.493 0.434 0.524 0.522 0.522 0.409 ICBI 

PSNR 40.908 40.927 41.34 41.179 42.499 39.773 41.24 39.004 41.012 38.945 38.611 40.918 41.501 40.717 39.858 ICBI 

RMSE 0.009 0.009 0.009 0.009 0.007 0.01 0.009 0.011 0.009 0.011 0.012 0.009 0.008 0.009 0.01 ICBI 

SSIM 0.932 0.932 0.937 0.935 0.952 0.915 0.936 0.899 0.933 0.897 0.89 0.932 0.939 0.929 0.915 ICBI 

face 

FSIM 0.543 0.533 0.533 0.525 0.591 0.511 0.531 0.522 0.537 0.516 0.458 0.544 0.549 0.541 0.449 ICBI 

PSNR 49.219 49.448 49.608 49.523 51.446 48.578 49.56 47.606 48.638 47.475 46.456 49.209 49.806 49.029 48.252 ICBI 

RMSE 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.004 0.005 0.003 0.003 0.004 0.004 ICBI 

SSIM 0.985 0.985 0.986 0.986 0.991 0.981 0.986 0.977 0.982 0.977 0.972 0.985 0.987 0.984 0.982 ICBI 

flowers 

FSIM 0.529 0.523 0.526 0.526 0.595 0.491 0.525 0.507 0.525 0.503 0.439 0.53 0.532 0.529 0.415 ICBI 

PSNR 44.068 43.996 44.403 44.298 46.548 42.696 44.349 41.968 43.386 41.87 41.249 44.07 44.599 43.895 42.932 ICBI 

RMSE 0.006 0.006 0.006 0.006 0.005 0.007 0.006 0.008 0.007 0.008 0.009 0.006 0.006 0.006 0.007 ICBI 

SSIM 0.964 0.963 0.966 0.965 0.978 0.952 0.965 0.94 0.955 0.939 0.932 0.964 0.967 0.962 0.954 ICBI 

foreman 

FSIM 0.594 0.603 0.592 0.592 0.659 0.531 0.597 0.585 0.605 0.571 0.472 0.599 0.611 0.598 0.445 ICBI 

PSNR 46.588 46.487 46.685 46.898 49.859 44.563 46.998 45.041 46.538 44.626 43.79 46.804 47.103 46.698 45.28 ICBI 

RMSE 0.005 0.005 0.005 0.005 0.003 0.006 0.004 0.006 0.005 0.006 0.006 0.005 0.004 0.005 0.005 ICBI 

SSIM 0.986 0.986 0.987 0.987 0.993 0.976 0.987 0.979 0.986 0.977 0.97 0.987 0.988 0.986 0.981 ICBI 

lenna 

FSIM 0.526 0.515 0.518 0.514 0.604 0.512 0.515 0.506 0.526 0.505 0.436 0.527 0.532 0.525 0.431 ICBI 

PSNR 47.918 47.847 48.098 47.961 51.015 47.8 48.017 44.378 45.567 44.346 43.676 47.921 48.514 47.736 46.802 ICBI 

RMSE 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.006 0.005 0.006 0.007 0.004 0.004 0.004 0.005 ICBI 

SSIM 0.984 0.984 0.985 0.984 0.992 0.984 0.984 0.966 0.975 0.966 0.961 0.984 0.986 0.983 0.98 ICBI 

man 

FSIM 0.518 0.511 0.514 0.512 0.589 0.489 0.515 0.504 0.522 0.498 0.435 0.52 0.523 0.52 0.413 ICBI 

PSNR 44.751 44.787 45.077 44.987 46.86 44.063 45.011 43.151 45.167 42.999 42.527 44.791 45.336 44.622 43.757 ICBI 

RMSE 0.006 0.006 0.006 0.006 0.005 0.006 0.006 0.007 0.006 0.007 0.007 0.006 0.005 0.006 0.006 ICBI 

SSIM 0.963 0.964 0.965 0.965 0.978 0.956 0.965 0.95 0.966 0.949 0.944 0.963 0.967 0.962 0.956 ICBI 

monarch 

FSIM 0.603 0.621 0.609 0.606 0.674 0.556 0.613 0.583 0.6 0.575 0.469 0.602 0.61 0.596 0.456 ICBI 

PSNR 46.141 46.133 46.56 46.427 49.612 43.858 46.428 43.65 44.735 43.48 42.52 46.177 46.611 46.017 44.785 ICBI 

RMSE 0.005 0.005 0.005 0.005 0.003 0.006 0.005 0.007 0.006 0.007 0.007 0.005 0.005 0.005 0.006 ICBI 

SSIM 0.979 0.98 0.981 0.98 0.99 0.966 0.981 0.961 0.969 0.959 0.951 0.979 0.981 0.979 0.972 ICBI 

pepper 

FSIM 0.552 0.555 0.552 0.548 0.62 0.527 0.55 0.526 0.548 0.517 0.436 0.555 0.564 0.552 0.442 ICBI 

PSNR 46.237 46.244 46.471 46.414 49.905 45.416 46.414 43.384 43.927 43.242 42.568 46.305 46.708 46.202 45.193 ICBI 

RMSE 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.007 0.006 0.007 0.007 0.005 0.005 0.005 0.005 ICBI 

SSIM 0.981 0.981 0.981 0.981 0.992 0.977 0.981 0.945 0.951 0.945 0.939 0.981 0.982 0.98 0.976 ICBI 

ppt3 

FSIM 0.54 0.55 0.525 0.508 0.598 0.501 0.515 0.511 0.538 0.488 0.476 0.545 0.56 0.518 0.492 ICBI 

PSNR 40.467 40.404 40.75 40.781 43.38 39.857 40.695 39.418 40.446 39.341 38.833 40.755 41.138 40.653 39.595 ICBI 

RMSE 0.009 0.01 0.009 0.009 0.007 0.01 0.009 0.011 0.009 0.011 0.011 0.009 0.009 0.009 0.01 ICBI 

SSIM 0.939 0.938 0.941 0.941 0.967 0.932 0.941 0.922 0.934 0.92 0.914 0.941 0.944 0.94 0.929 ICBI 

zebra  

FSIM 0.542 0.537 0.529 0.527 0.617 0.484 0.528 0.537 0.533 0.533 0.451 0.542 0.532 0.546 0.431 ICBI 

PSNR 42.228 42.14 42.441 42.331 46.165 41.136 42.365 40.474 41.943 40.469 39.664 42.375 42.852 42.238 41.04 ICBI 

RMSE 0.008 0.008 0.008 0.008 0.005 0.009 0.008 0.009 0.008 0.009 0.01 0.008 0.007 0.008 0.009 ICBI 

SSIM 0.944 0.943 0.946 0.945 0.976 0.928 0.945 0.921 0.94 0.921 0.909 0.945 0.949 0.944 0.93 ICBI 
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Table IX-9: IQA metrics of Set14, scale factor 8 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

baboon  

FSIM 
    

0.363 0.35 
 

0.332 0.331 0.328 0.314 0.332 0.33 0.328 0.253 ICBI 

PSNR 
    

40.792 39.886 
 

39.569 40.205 39.384 38.649 40.148 40.831 39.935 39.418 bilinear 

RMSE 
    

0.009 0.01 
 

0.011 0.01 0.011 0.012 0.01 0.009 0.01 0.011 bilinear 

SSIM 
    

0.918 0.898 
 

0.882 0.897 0.877 0.864 0.906 0.919 0.901 0.893 bilinear 

barbara  

FSIM 
    

0.461 0.405 
 

0.419 0.413 0.416 0.339 0.42 0.415 0.417 0.295 ICBI 

PSNR 
    

43.307 41.389 
 

41.667 42.251 41.538 40.729 42.059 42.698 41.909 41.309 ICBI 

RMSE 
    

0.007 0.009 
 

0.008 0.008 0.008 0.009 0.008 0.007 0.008 0.009 ICBI 

SSIM 
    

0.958 0.937 
 

0.936 0.944 0.934 0.923 0.945 0.952 0.943 0.935 ICBI 

bridge  

FSIM 
    

0.381 0.353 
 

0.354 0.352 0.349 0.326 0.353 0.351 0.349 0.268 ICBI 

PSNR 
    

42.501 39.801 
 

41.112 41.729 40.923 40.098 41.143 41.751 40.954 40.367 ICBI 

RMSE 
    

0.007 0.01 
 

0.009 0.008 0.009 0.01 0.009 0.008 0.009 0.01 ICBI 

SSIM 
    

0.95 0.92 
 

0.936 0.944 0.933 0.919 0.937 0.944 0.934 0.925 ICBI 

coastguard  

FSIM 
    

0.344 0.33 
 

0.325 0.325 0.323 0.308 0.323 0.322 0.322 0.261 ICBI 

PSNR 
    

43.176 41.477 
 

42.41 42.821 42.285 41.797 42.441 42.867 42.317 41.952 ICBI 

RMSE 
    

0.007 0.008 
 

0.008 0.007 0.008 0.008 0.008 0.007 0.008 0.008 ICBI 

SSIM 
    

0.962 0.936 
 

0.951 0.957 0.95 0.944 0.954 0.958 0.952 0.947 ICBI 

comic  

FSIM 
    

0.437 0.389 
 

0.396 0.4 0.389 0.346 0.398 0.401 0.391 0.282 ICBI 

PSNR 
    

39.811 37.247 
 

38.075 38.678 37.91 36.992 38.273 38.892 38.098 37.371 ICBI 

RMSE 
    

0.01 0.014 
 

0.012 0.012 0.013 0.014 0.012 0.011 0.012 0.014 ICBI 

SSIM 
    

0.919 0.873 
 

0.886 0.899 0.882 0.856 0.892 0.904 0.888 0.869 ICBI 

face 

FSIM 
    

0.488 0.454 
 

0.446 0.454 0.434 0.371 0.447 0.459 0.435 0.342 ICBI 

PSNR 
    

49.255 45.592 
 

45.874 46.316 45.756 44.793 46.445 47.0 46.303 45.549 ICBI 

RMSE 
    

0.003 0.005 
 

0.005 0.005 0.005 0.006 0.005 0.004 0.005 0.005 ICBI 

SSIM 
    

0.982 0.96 
 

0.961 0.967 0.96 0.955 0.967 0.972 0.966 0.962 ICBI 

flowers 

FSIM     0.474 0.395  0.419 0.417 0.414 0.348 0.424 0.421 0.418 0.291 ICBI 

PSNR     43.064 39.663  40.527 41.061 40.348 39.374 40.981 41.618 40.782 39.931 ICBI 

RMSE     0.007 0.01  0.009 0.009 0.01 0.011 0.009 0.008 0.009 0.01 ICBI 

SSIM     0.954 0.914  0.919 0.929 0.915 0.902 0.93 0.939 0.926 0.916 ICBI 

foreman 

FSIM 
    

0.544 0.406 
 

0.465 0.46 0.462 0.383 0.462 0.462 0.459 0.299 ICBI 

PSNR 
    

45.596 40.623 
 

41.703 42.011 41.627 40.36 41.85 42.165 41.769 40.613 ICBI 

RMSE 
    

0.005 0.009 
 

0.008 0.008 0.008 0.01 0.008 0.008 0.008 0.009 ICBI 

SSIM 
    

0.983 0.952 
 

0.964 0.967 0.963 0.946 0.966 0.968 0.965 0.951 ICBI 

lenna 

FSIM 
    

0.492 0.418 
 

0.417 0.415 0.411 0.351 0.417 0.416 0.411 0.31 ICBI 

PSNR 
    

47.605 44.707 
 

43.186 43.559 43.073 42.243 44.508 45.098 44.351 43.582 ICBI 

RMSE 
    

0.004 0.006 
 

0.007 0.007 0.007 0.008 0.006 0.006 0.006 0.007 ICBI 

SSIM 
    

0.982 0.97 
 

0.957 0.962 0.956 0.948 0.968 0.972 0.967 0.961 ICBI 

man 

FSIM 
    

0.464 0.397 
 

0.408 0.412 0.402 0.346 0.409 0.413 0.404 0.29 ICBI 

PSNR 
    

43.941 41.205 
 

41.825 42.46 41.648 40.625 41.864 42.484 41.684 40.946 ICBI 

RMSE 
    

0.006 0.009 
 

0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.009 ICBI 

SSIM 
    

0.956 0.919 
 

0.927 0.936 0.925 0.911 0.928 0.936 0.925 0.916 ICBI 

monarch 

FSIM 
    

0.555 0.428 
 

0.475 0.465 0.475 0.38 0.479 0.472 0.478 0.317 ICBI 

PSNR 
    

44.526 40.594 
 

41.775 42.258 41.6 40.531 42.486 43.062 42.276 41.351 ICBI 

RMSE 
    

0.006 0.009 
 

0.008 0.008 0.008 0.009 0.008 0.007 0.008 0.009 ICBI 

SSIM 
    

0.972 0.937 
 

0.943 0.95 0.941 0.929 0.956 0.96 0.954 0.945 ICBI 

pepper 

FSIM 
    

0.521 0.428 
 

0.434 0.435 0.432 0.345 0.441 0.441 0.437 0.307 ICBI 

PSNR 
    

46.185 41.543 
 

41.119 41.431 41.041 40.296 42.329 42.788 42.214 41.383 ICBI 

RMSE 
    

0.005 0.008 
 

0.009 0.008 0.009 0.01 0.008 0.007 0.008 0.009 ICBI 

SSIM 
    

0.98 0.946 
 

0.92 0.927 0.92 0.911 0.953 0.957 0.951 0.942 ICBI 

ppt3 

FSIM 
    

0.489 0.377 
 

0.412 0.415 0.402 0.388 0.428 0.434 0.415 0.379 ICBI 

PSNR 
    

39.776 36.791 
 

37.353 37.818 37.287 36.374 37.74 38.165 37.665 36.7 ICBI 

RMSE 
    

0.01 0.014 
 

0.014 0.013 0.014 0.015 0.013 0.012 0.013 0.015 ICBI 

SSIM 
    

0.929 0.887 
 

0.887 0.895 0.886 0.87 0.899 0.905 0.898 0.883 ICBI 

zebra  

FSIM 
    

0.421 0.363 
 

0.365 0.364 0.362 0.345 0.366 0.363 0.364 0.283 ICBI 

PSNR 
    

40.77 38.05 
 

38.723 39.296 38.598 37.537 39.099 39.687 38.955 37.959 ICBI 

RMSE 
    

0.009 0.013 
 

0.012 0.011 0.012 0.013 0.011 0.01 0.011 0.013 ICBI 

SSIM 
    

0.922 0.866 
 

0.882 0.894 0.88 0.859 0.892 0.902 0.89 0.871 ICBI 
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Table IX-10: IQA metrics of Urban100, scale factor 2 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

img_001 

FSIM 0.61 0.69 0.677 0.67 0.685 0.637 0.672 0.62 0.653 0.599 0.578 0.665 0.673 0.65 0.664 EDSR 

PSNR 45.355 48.741 48.791 48.563 49.488 47.817 48.695 45.547 47.702 45.017 44.144 48.56 48.945 48.282 47.323 ICBI 

RMSE 0.005 0.004 0.004 0.004 0.003 0.004 0.004 0.005 0.004 0.006 0.006 0.004 0.004 0.004 0.004 ICBI 

SSIM 0.974 0.987 0.987 0.987 0.989 0.983 0.987 0.975 0.984 0.971 0.965 0.986 0.987 0.986 0.983 ICBI 

img_002 

FSIM 0.624 0.692 0.69 0.68 0.736 0.67 0.683 0.623 0.66 0.602 0.585 0.679 0.689 0.667 0.68 ICBI 

PSNR 43.836 47.002 47.526 47.172 49.447 47.078 47.467 44.045 46.122 43.864 42.19 47.38 47.861 47.136 46.089 ICBI 

RMSE 0.006 0.004 0.004 0.004 0.003 0.004 0.004 0.006 0.005 0.006 0.008 0.004 0.004 0.004 0.005 ICBI 

SSIM 0.963 0.981 0.983 0.982 0.989 0.981 0.983 0.964 0.977 0.963 0.948 0.982 0.984 0.981 0.977 ICBI 

img_003 

FSIM 0.597 0.661 0.65 0.644 0.655 0.608 0.646 0.603 0.63 0.582 0.566 0.641 0.645 0.631 0.639 EDSR 

PSNR 42.732 45.545 45.51 45.337 45.811 43.851 45.41 42.733 44.421 42.298 41.389 45.216 45.647 44.95 44.272 ICBI 

RMSE 0.007 0.005 0.005 0.005 0.005 0.006 0.005 0.007 0.006 0.008 0.009 0.005 0.005 0.006 0.006 ICBI 

SSIM 0.954 0.974 0.974 0.973 0.975 0.961 0.973 0.953 0.967 0.948 0.938 0.972 0.974 0.97 0.966 ICBI 

img_004 

FSIM 0.66 0.733 0.722 0.713 0.736 0.663 0.714 0.671 0.707 0.638 0.638 0.706 0.726 0.689 0.715 ICBI 

PSNR 43.412 46.162 46.456 46.098 48.817 43.157 46.242 43.974 45.609 42.9 42.5 46.161 46.202 46.013 44.467 ICBI 

RMSE 0.007 0.005 0.005 0.005 0.004 0.007 0.005 0.006 0.005 0.007 0.007 0.005 0.005 0.005 0.006 ICBI 

SSIM 0.962 0.978 0.979 0.977 0.988 0.954 0.978 0.965 0.975 0.957 0.953 0.977 0.977 0.977 0.968 ICBI 

img_005 

FSIM 0.679 0.746 0.73 0.725 0.726 0.671 0.723 0.679 0.704 0.648 0.648 0.716 0.724 0.695 0.719 EDSR 

PSNR 45.471 48.018 48.238 48.026 50.842 45.66 48.111 44.612 45.75 44.331 43.364 48.116 48.204 47.967 46.194 ICBI 

RMSE 0.005 0.004 0.004 0.004 0.003 0.005 0.004 0.006 0.005 0.006 0.007 0.004 0.004 0.004 0.005 ICBI 

SSIM 0.979 0.988 0.988 0.988 0.993 0.977 0.988 0.971 0.976 0.968 0.963 0.988 0.987 0.987 0.981 ICBI 

img_006 

FSIM 0.63 0.718 0.711 0.703 0.732 0.661 0.701 0.636 0.679 0.618 0.571 0.696 0.698 0.681 0.681 ICBI 

PSNR 41.25 44.008 44.179 43.968 44.868 42.366 44.155 41.463 43.148 41.385 40.092 44.069 44.435 43.802 42.918 ICBI 

RMSE 0.009 0.006 0.006 0.006 0.006 0.008 0.006 0.008 0.007 0.009 0.01 0.006 0.006 0.006 0.007 ICBI 

SSIM 0.94 0.966 0.967 0.965 0.971 0.95 0.966 0.941 0.958 0.94 0.922 0.966 0.968 0.964 0.957 ICBI 

img_007 

FSIM 0.701 0.75 0.745 0.739 0.767 0.697 0.739 0.693 0.721 0.665 0.66 0.738 0.744 0.728 0.736 ICBI 

PSNR 47.737 50.055 50.123 49.854 52.962 48.47 50.044 46.629 48.03 45.861 45.48 50.044 50.276 49.903 48.422 ICBI 

RMSE 0.004 0.003 0.003 0.003 0.002 0.004 0.003 0.005 0.004 0.005 0.005 0.003 0.003 0.003 0.004 ICBI 

SSIM 0.985 0.991 0.991 0.99 0.995 0.987 0.991 0.982 0.987 0.978 0.976 0.991 0.991 0.991 0.987 ICBI 

img_008 

FSIM 0.611 0.696 0.691 0.683 0.706 0.648 0.686 0.632 0.667 0.613 0.588 0.681 0.687 0.667 0.677 ICBI 

PSNR 40.54 43.652 43.978 43.764 44.35 41.782 43.84 40.951 42.709 40.791 39.329 43.691 44.035 43.413 42.387 ICBI 

RMSE 0.009 0.007 0.006 0.006 0.006 0.008 0.006 0.009 0.007 0.009 0.011 0.007 0.006 0.007 0.008 ICBI 

SSIM 0.931 0.963 0.965 0.964 0.969 0.944 0.964 0.936 0.955 0.933 0.912 0.963 0.964 0.961 0.952 ICBI 

img_009 

FSIM 0.643 0.704 0.688 0.684 0.663 0.601 0.689 0.633 0.663 0.607 0.593 0.681 0.68 0.672 0.699 EDSR 

PSNR 51.276 54.673 54.849 54.804 55.618 53.179 54.871 51.139 52.645 50.766 49.438 54.743 55.008 54.556 53.437 ICBI 

RMSE 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.003 0.002 0.002 0.002 0.002 ICBI 

SSIM 0.993 0.997 0.997 0.997 0.997 0.995 0.997 0.993 0.995 0.992 0.99 0.997 0.997 0.997 0.996 ICBI 

img_010 

FSIM 0.585 0.651 0.655 0.642 0.663 0.643 0.648 0.6 0.63 0.574 0.564 0.65 0.661 0.633 0.652 ICBI 

PSNR 43.224 45.182 45.94 45.649 47.917 47.113 46.097 43.707 44.979 43.454 42.569 46.012 46.672 45.737 44.787 ICBI 

RMSE 0.007 0.006 0.005 0.005 0.004 0.004 0.005 0.007 0.006 0.007 0.007 0.005 0.005 0.005 0.006 ICBI 

SSIM 0.964 0.975 0.979 0.978 0.986 0.984 0.98 0.967 0.975 0.965 0.959 0.979 0.981 0.978 0.973 ICBI 
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Table IX-11: IQA metrics of Urban100, scale factor 3 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

img_001 

FSIM 0.558 0.581 0.574 0.567 
   

0.532 0.56 0.507 0.488 0.565 0.566 0.56 0.472 EDSR 

PSNR 45.4 45.865 46.173 46.015 
   

43.543 45.587 42.593 43.412 45.77 46.124 45.613 44.743 ESPCN 

RMSE 0.005 0.005 0.005 0.005 
   

0.007 0.005 0.007 0.007 0.005 0.005 0.005 0.006 ESPCN 

SSIM 0.972 0.975 0.976 0.975 
   

0.959 0.973 0.95 0.958 0.974 0.976 0.973 0.968 ESPCN 

img_002 

FSIM 0.543 0.544 0.552 0.546 
   

0.496 0.544 0.471 0.46 0.551 0.559 0.541 0.488 bilinear 

PSNR 43.878 43.712 44.534 44.37 
   

41.7 44.086 41.01 41.655 44.306 44.753 44.118 43.25 bilinear 

RMSE 0.006 0.007 0.006 0.006 
   

0.008 0.006 0.009 0.008 0.006 0.006 0.006 0.007 bilinear 

SSIM 0.962 0.96 0.967 0.966 
   

0.94 0.963 0.93 0.939 0.965 0.968 0.964 0.956 bilinear 

img_003 

FSIM 0.54 0.558 0.549 0.543 
   

0.515 0.536 0.49 0.486 0.542 0.538 0.538 0.456 EDSR 

PSNR 42.353 43.02 43.305 43.118 
   

40.502 42.484 39.831 40.632 42.673 43.069 42.497 41.871 ESPCN 

RMSE 0.008 0.007 0.007 0.007 
   

0.009 0.008 0.01 0.009 0.007 0.007 0.008 0.008 ESPCN 

SSIM 0.946 0.953 0.955 0.953 
   

0.921 0.946 0.909 0.924 0.949 0.953 0.947 0.941 ESPCN 

img_004 

FSIM 0.586 0.615 0.608 0.61 
   

0.552 0.597 0.525 0.504 0.6 0.613 0.591 0.511 EDSR 

PSNR 41.561 41.85 42.432 42.364 
   

40.138 41.799 39.671 39.979 42.197 42.435 42.065 40.974 bilinear 

RMSE 0.008 0.008 0.008 0.008 
   

0.01 0.008 0.01 0.01 0.008 0.008 0.008 0.009 bilinear 

SSIM 0.935 0.94 0.944 0.944 
   

0.916 0.937 0.908 0.913 0.942 0.944 0.941 0.928 ESPCN 

img_005 

FSIM 0.613 0.662 0.636 0.642 
   

0.601 0.618 0.57 0.54 0.62 0.628 0.605 0.515 EDSR 

PSNR 43.622 43.992 44.632 44.66 
   

41.866 43.198 41.259 41.293 44.41 44.638 44.256 42.868 FSRCNN 

RMSE 0.007 0.006 0.006 0.006 
   

0.008 0.007 0.009 0.009 0.006 0.006 0.006 0.007 FSRCNN 

SSIM 0.966 0.969 0.972 0.972 
   

0.948 0.958 0.94 0.941 0.971 0.971 0.97 0.96 FSRCNN 

img_006 

FSIM 0.568 0.581 0.58 0.577 
   

0.534 0.567 0.503 0.48 0.576 0.573 0.569 0.464 EDSR 

PSNR 41.065 41.464 41.818 41.683 
   

39.345 41.362 39.042 39.437 41.491 41.865 41.332 40.423 bilinear 

RMSE 0.009 0.008 0.008 0.008 
   

0.011 0.009 0.011 0.011 0.008 0.008 0.009 0.01 bilinear 

SSIM 0.935 0.941 0.943 0.942 
   

0.907 0.937 0.9 0.909 0.94 0.943 0.938 0.926 ESPCN 

img_007 

FSIM 0.614 0.627 0.62 0.616 
   

0.584 0.609 0.558 0.518 0.622 0.626 0.615 0.535 EDSR 

PSNR 45.549 45.7 45.987 45.911 
   

43.585 45.127 42.74 43.042 45.961 46.263 45.838 44.686 bilinear 

RMSE 0.005 0.005 0.005 0.005 
   

0.007 0.006 0.007 0.007 0.005 0.005 0.005 0.006 bilinear 

SSIM 0.975 0.976 0.977 0.976 
   

0.962 0.973 0.954 0.957 0.977 0.978 0.976 0.969 bilinear 

img_008 

FSIM 0.57 0.577 0.57 0.569 
   

0.538 0.572 0.518 0.501 0.577 0.572 0.571 0.472 bicubic 

PSNR 40.537 40.992 41.474 41.337 
   

38.548 40.745 38.28 38.552 40.951 41.362 40.734 39.894 ESPCN 

RMSE 0.009 0.009 0.008 0.009 
   

0.012 0.009 0.012 0.012 0.009 0.009 0.009 0.01 ESPCN 

SSIM 0.926 0.932 0.938 0.936 
   

0.892 0.928 0.884 0.891 0.932 0.936 0.929 0.916 ESPCN 

img_009 

FSIM 0.537 0.563 0.535 0.528 
   

0.522 0.532 0.502 0.489 0.529 0.534 0.523 0.488 EDSR 

PSNR 51.023 51.102 51.647 51.55 
   

48.631 50.593 48.103 48.77 51.389 51.728 51.194 50.41 bilinear 

RMSE 0.003 0.003 0.003 0.003 
   

0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 bilinear 

SSIM 0.993 0.993 0.993 0.993 
   

0.988 0.992 0.986 0.988 0.993 0.994 0.993 0.991 bilinear 

img_010 

FSIM 0.528 0.533 0.526 0.516 
   

0.502 0.534 0.482 0.475 0.526 0.534 0.517 0.488 VDSR_ 
bilinear 

PSNR 43.122 42.3 43.714 43.49 
   

41.726 43.57 41.137 41.461 43.589 44.102 43.383 42.574 bilinear 

RMSE 0.007 0.008 0.007 0.007 
   

0.008 0.007 0.009 0.008 0.007 0.006 0.007 0.007 bilinear 

SSIM 0.962 0.953 0.966 0.965 
   

0.95 0.965 0.942 0.947 0.965 0.968 0.964 0.957 bilinear 
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Table IX-12: IQA metrics of Urban100, scale factor 4 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

img_001 

FSIM 0.505 0.512 0.513 0.506 0.559 0.467 0.511 0.489 0.506 0.485 0.433 0.505 0.507 0.506 0.384 ICBI 

PSNR 44.409 44.335 44.793 44.733 45.996 43.504 44.747 42.928 44.712 42.698 42.311 44.442 44.948 44.287 43.463 ICBI 

RMSE 0.006 0.006 0.006 0.006 0.005 0.007 0.006 0.007 0.006 0.007 0.008 0.006 0.006 0.006 0.007 ICBI 

SSIM 0.964 0.964 0.967 0.966 0.975 0.953 0.966 0.952 0.966 0.949 0.946 0.964 0.967 0.962 0.957 ICBI 

img_002 

FSIM 0.485 0.453 0.475 0.473 0.579 0.481 0.477 0.454 0.489 0.446 0.394 0.488 0.495 0.483 0.403 ICBI 

PSNR 42.811 42.235 43.106 42.965 45.137 42.543 42.996 41.033 43.21 40.96 40.546 42.819 43.485 42.634 41.856 ICBI 

RMSE 0.007 0.008 0.007 0.007 0.006 0.007 0.007 0.009 0.007 0.009 0.009 0.007 0.007 0.007 0.008 ICBI 

SSIM 0.952 0.945 0.955 0.954 0.972 0.949 0.954 0.931 0.956 0.929 0.922 0.952 0.958 0.95 0.941 ICBI 

img_003 

FSIM 0.485 0.492 0.488 0.484 0.524 0.457 0.488 0.476 0.478 0.473 0.438 0.488 0.48 0.491 0.375 ICBI 

PSNR 41.651 41.75 42.241 42.129 42.583 40.63 42.157 39.932 41.976 39.813 39.778 41.636 42.22 41.446 40.839 ICBI 

RMSE 0.008 0.008 0.008 0.008 0.007 0.009 0.008 0.01 0.008 0.01 0.01 0.008 0.008 0.008 0.009 ICBI 

SSIM 0.935 0.937 0.943 0.941 0.947 0.918 0.942 0.909 0.939 0.906 0.907 0.935 0.942 0.932 0.925 ICBI 

img_004 

FSIM 0.536 0.542 0.539 0.531 0.603 0.481 0.534 0.507 0.544 0.501 0.446 0.538 0.547 0.535 0.417 ICBI 

PSNR 40.264 40.111 40.611 40.513 42.45 38.296 40.451 38.925 40.622 38.962 38.569 40.393 40.819 40.279 39.32 ICBI 

RMSE 0.01 0.01 0.009 0.009 0.008 0.012 0.009 0.011 0.009 0.011 0.012 0.01 0.009 0.01 0.011 ICBI 

SSIM 0.908 0.907 0.914 0.912 0.946 0.852 0.911 0.885 0.914 0.885 0.877 0.91 0.917 0.908 0.892 ICBI 

img_005 

FSIM 0.558 0.601 0.574 0.573 0.619 0.51 0.582 0.54 0.56 0.526 0.478 0.554 0.562 0.549 0.424 ICBI 

PSNR 42.537 42.255 42.95 42.809 45.109 40.475 42.976 40.651 42.226 40.445 39.977 42.649 43.107 42.486 41.287 ICBI 

RMSE 0.007 0.008 0.007 0.007 0.006 0.009 0.007 0.009 0.008 0.01 0.01 0.007 0.007 0.008 0.009 ICBI 

SSIM 0.956 0.954 0.959 0.958 0.975 0.926 0.959 0.933 0.947 0.929 0.923 0.956 0.959 0.955 0.944 ICBI 

img_006 

FSIM 0.508 0.51 0.508 0.507 0.568 0.459 0.51 0.496 0.502 0.487 0.426 0.51 0.502 0.511 0.374 ICBI 

PSNR 40.447 40.3 41.006 40.822 41.254 39.151 40.971 38.636 40.888 38.691 38.602 40.521 41.154 40.301 39.525 ICBI 

RMSE 0.009 0.01 0.009 0.009 0.009 0.011 0.009 0.012 0.009 0.012 0.012 0.009 0.009 0.01 0.011 ICBI 

SSIM 0.923 0.922 0.93 0.928 0.936 0.893 0.93 0.89 0.927 0.89 0.891 0.924 0.932 0.92 0.909 ICBI 

img_007 

FSIM 0.544 0.537 0.538 0.532 0.639 0.516 0.536 0.526 0.543 0.518 0.437 0.546 0.552 0.543 0.434 ICBI 

PSNR 43.811 43.428 43.88 43.703 47.624 42.523 43.753 42.318 43.733 42.176 41.331 43.824 44.35 43.689 42.708 ICBI 

RMSE 0.006 0.007 0.006 0.007 0.004 0.007 0.006 0.008 0.007 0.008 0.009 0.006 0.006 0.007 0.007 ICBI 

SSIM 0.962 0.959 0.963 0.962 0.984 0.95 0.962 0.949 0.962 0.947 0.937 0.962 0.966 0.961 0.953 ICBI 

img_008 

FSIM 0.51 0.499 0.495 0.492 0.548 0.472 0.495 0.499 0.503 0.495 0.443 0.511 0.5 0.513 0.379 ICBI 

PSNR 39.724 39.744 40.329 40.121 40.518 38.433 40.23 37.775 40.06 37.824 37.593 39.763 40.386 39.554 38.775 ICBI 

RMSE 0.01 0.01 0.01 0.01 0.009 0.012 0.01 0.013 0.01 0.013 0.013 0.01 0.01 0.011 0.012 ICBI 

SSIM 0.912 0.911 0.921 0.918 0.927 0.887 0.92 0.872 0.917 0.873 0.867 0.913 0.922 0.909 0.894 ICBI 

img_009 

FSIM 0.467 0.484 0.471 0.469 0.509 0.431 0.475 0.465 0.47 0.456 0.42 0.463 0.468 0.46 0.4 ICBI 

PSNR 50.045 49.665 50.404 50.338 51.321 49.244 50.358 48.189 49.887 48.278 48.02 50.049 50.557 49.875 49.18 ICBI 

RMSE 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 ICBI 

SSIM 0.991 0.99 0.992 0.992 0.993 0.989 0.992 0.987 0.991 0.987 0.986 0.991 0.992 0.991 0.989 ICBI 

img_010 

FSIM 0.454 0.456 0.455 0.444 0.512 0.479 0.458 0.439 0.462 0.432 0.412 0.452 0.46 0.448 0.403 ICBI 

PSNR 42.407 41.657 42.729 42.492 44.838 43.43 42.728 40.91 42.916 40.751 40.623 42.45 43.221 42.24 41.508 ICBI 

RMSE 0.008 0.008 0.007 0.008 0.006 0.007 0.007 0.009 0.007 0.009 0.009 0.008 0.007 0.008 0.008 ICBI 

SSIM 0.956 0.947 0.958 0.957 0.974 0.965 0.958 0.941 0.96 0.938 0.938 0.957 0.962 0.955 0.948 ICBI 
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Table IX-13: IQA metrics of Urban100, scale factor 8 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

img_001 

FSIM 
    

0.457 0.379 
 

0.404 0.409 0.4 0.349 0.405 0.409 0.401 0.273 ICBI 

PSNR 
    

43.737 40.649 
 

41.745 42.374 41.591 40.487 41.907 42.467 41.751 40.899 ICBI 

RMSE 
    

0.007 0.009 
 

0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.009 ICBI 

SSIM 
    

0.956 0.911 
 

0.931 0.939 0.928 0.914 0.932 0.94 0.93 0.92 ICBI 

img_002 

FSIM 
    

0.457 0.388 
 

0.383 0.385 0.378 0.335 0.384 0.387 0.379 0.304 ICBI 

PSNR 
    

42.552 39.673 
 

39.975 40.688 39.802 38.823 40.062 40.761 39.884 39.2 ICBI 

RMSE 
    

0.007 0.01 
 

0.01 0.009 0.01 0.011 0.01 0.009 0.01 0.011 ICBI 

SSIM 
    

0.95 0.91 
 

0.917 0.929 0.914 0.894 0.919 0.93 0.916 0.902 ICBI 

img_003 

FSIM 
    

0.412 0.383 
 

0.384 0.385 0.379 0.338 0.385 0.385 0.38 0.258 ICBI 

PSNR 
    

40.598 38.7 
 

39.54 40.199 39.354 38.495 39.671 40.303 39.483 38.851 ICBI 

RMSE 
    

0.009 0.012 
 

0.011 0.01 0.011 0.012 0.01 0.01 0.011 0.011 ICBI 

SSIM 
    

0.915 0.875 
 

0.894 0.909 0.89 0.875 0.899 0.912 0.895 0.885 ICBI 

img_004 

FSIM 
    

0.455 0.38 
 

0.405 0.409 0.401 0.354 0.409 0.411 0.405 0.286 ICBI 

PSNR 
    

38.848 36.446 
 

37.472 37.994 37.381 36.498 37.525 38.027 37.426 36.609 ICBI 

RMSE 
    

0.011 0.015 
 

0.013 0.013 0.014 0.015 0.013 0.013 0.013 0.015 ICBI 

SSIM 
    

0.868 0.779 
 

0.824 0.841 0.821 0.796 0.827 0.843 0.824 0.8 ICBI 

img_005 

FSIM 
    

0.505 0.391 
 

0.441 0.442 0.438 0.383 0.443 0.445 0.439 0.305 ICBI 

PSNR 
    

41.048 38.173 
 

39.205 39.732 39.038 38.006 39.536 40.09 39.36 38.452 ICBI 

RMSE 
    

0.009 0.012 
 

0.011 0.01 0.011 0.013 0.011 0.01 0.011 0.012 ICBI 

SSIM 
    

0.937 0.877 
 

0.907 0.911 0.903 0.885 0.915 0.921 0.912 0.899 ICBI 

img_006 

FSIM 
    

0.428 0.367 
 

0.389 0.391 0.385 0.342 0.392 0.393 0.388 0.261 ICBI 

PSNR 
    

39.501 37.498 
 

38.778 39.434 38.583 37.66 38.849 39.496 38.651 37.918 ICBI 

RMSE 
    

0.011 0.013 
 

0.012 0.011 0.012 0.013 0.011 0.011 0.012 0.013 ICBI 

SSIM 
    

0.905 0.847 
 

0.888 0.901 0.883 0.863 0.892 0.903 0.887 0.872 ICBI 

img_007 

FSIM 
    

0.502 0.406 
 

0.419 0.414 0.415 0.348 0.423 0.419 0.419 0.301 ICBI 

PSNR 
    

43.096 39.045 
 

39.911 40.502 39.76 38.82 40.045 40.678 39.881 39.123 ICBI 

RMSE 
    

0.007 0.011 
 

0.01 0.009 0.01 0.011 0.01 0.009 0.01 0.011 ICBI 

SSIM 
    

0.955 0.901 
 

0.915 0.925 0.912 0.896 0.918 0.928 0.915 0.903 ICBI 

img_008 

FSIM 
    

0.402 0.378 
 

0.373 0.373 0.369 0.355 0.374 0.372 0.37 0.262 ICBI 

PSNR 
    

38.372 37.016 
 

37.7 38.445 37.485 36.613 37.896 38.589 37.683 37.085 bilinear 

RMSE 
    

0.012 0.014 
 

0.013 0.012 0.013 0.015 0.013 0.012 0.013 0.014 bilinear 

SSIM 
    

0.891 0.861 
 

0.875 0.89 0.869 0.844 0.879 0.893 0.874 0.858 bilinear 

img_009 

FSIM 
    

0.438 0.384 
 

0.398 0.395 0.398 0.343 0.401 0.401 0.399 0.311 ICBI 

PSNR 
    

48.983 47.288 
 

47.382 47.88 47.242 46.558 47.696 48.236 47.539 46.989 ICBI 

RMSE 
    

0.004 0.004 
 

0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.004 ICBI 

SSIM 
    

0.99 0.985 
 

0.986 0.987 0.985 0.982 0.986 0.988 0.986 0.984 ICBI 

img_010 

FSIM 
    

0.435 0.394 
 

0.371 0.374 0.372 0.327 0.375 0.377 0.375 0.294 ICBI 

PSNR 
    

42.714 41.227 
 

40.472 41.356 40.252 39.431 40.628 41.443 40.396 39.756 ICBI 

RMSE 
    

0.007 0.009 
 

0.009 0.009 0.01 0.011 0.009 0.008 0.01 0.01 ICBI 

SSIM 
    

0.962 0.949 
 

0.942 0.95 0.939 0.927 0.943 0.95 0.941 0.932 ICBI 
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Table IX-14: IQA metrics of tc100, scale factor 2 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

DSC02725 

FSIM 0.44 0.462 0.472 0.469 0.441 0.437 0.46 0.508 0.513 0.503 0.501 0.435 0.435 0.433 0.435 VDSR_ 
bilinear 

PSNR 59.317 60.409 60.484 60.385 61.054 59.389 60.474 44.232 44.265 44.212 44.237 60.209 60.284 60.168 59.592 ICBI 

RMSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.006 0.006 0.006 0.006 0.001 0.001 0.001 0.001 ICBI 

SSIM 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.92 0.921 0.92 0.921 0.999 0.999 0.999 0.999 ICBI 

DSC02842 

FSIM 0.615 0.633 0.632 0.63 0.647 0.626 0.632 0.6 0.621 0.581 0.582 0.627 0.631 0.626 0.619 ICBI 

PSNR 53.515 54.273 54.141 54.032 55.15 53.578 54.151 45.642 45.695 45.48 45.48 54.03 54.211 54.007 53.134 ICBI 

RMSE 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.005 0.002 0.002 0.002 0.002 ICBI 

SSIM 0.993 0.994 0.994 0.994 0.995 0.993 0.994 0.958 0.958 0.957 0.957 0.994 0.994 0.994 0.993 ICBI 

DSC02861 

FSIM 0.664 0.673 0.674 0.672 0.706 0.644 0.668 0.657 0.656 0.644 0.624 0.67 0.655 0.672 0.659 ICBI 

PSNR 52.174 54.236 54.337 54.114 55.611 53.849 54.283 50.919 52.29 48.7 49.084 54.185 54.42 54.01 53.031 ICBI 

RMSE 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.004 0.004 0.002 0.002 0.002 0.002 ICBI 

SSIM 0.994 0.996 0.996 0.996 0.997 0.996 0.996 0.991 0.994 0.986 0.987 0.996 0.996 0.996 0.995 ICBI 

DSC03071 

FSIM 0.627 0.646 0.648 0.644 0.659 0.628 0.648 0.625 0.651 0.607 0.603 0.637 0.646 0.634 0.63 ICBI 

PSNR 57.353 58.811 58.72 58.652 60.594 56.887 58.809 56.156 57.617 55.011 54.989 58.564 58.715 58.512 57.155 ICBI 

RMSE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 ICBI 

SSIM 0.998 0.999 0.999 0.999 0.999 0.998 0.999 0.998 0.998 0.997 0.997 0.999 0.999 0.999 0.998 ICBI 

DSC03083 

FSIM 0.579 0.598 0.602 0.6 0.611 0.582 0.598 0.584 0.592 0.575 0.568 0.594 0.594 0.593 0.586 ICBI 

PSNR 56.426 57.421 57.389 57.304 58.403 56.265 57.429 50.061 50.292 49.855 49.898 57.214 57.284 57.178 56.334 ICBI 

RMSE 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.003 0.003 0.003 0.003 0.001 0.001 0.001 0.002 ICBI 

SSIM 0.997 0.998 0.998 0.998 0.998 0.997 0.998 0.982 0.982 0.982 0.982 0.998 0.998 0.998 0.997 ICBI 

DSC03091 

FSIM 0.584 0.61 0.621 0.612 0.614 0.594 0.61 0.601 0.635 0.578 0.586 0.603 0.612 0.595 0.593 VDSR_ 
bilinear 

PSNR 53.72 55.135 55.023 54.829 58.226 52.766 55.092 50.534 51.263 49.98 50.196 54.947 55.226 54.9 53.206 ICBI 

RMSE 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 ICBI 

SSIM 0.996 0.998 0.997 0.997 0.999 0.996 0.998 0.992 0.993 0.991 0.991 0.997 0.998 0.997 0.996 ICBI 

DSC03144 

FSIM 0.647 0.676 0.676 0.673 0.703 0.657 0.676 0.637 0.662 0.613 0.606 0.672 0.679 0.667 0.657 ICBI 

PSNR 50.394 51.846 51.906 51.694 53.856 50.18 51.887 48.967 50.364 47.943 47.638 51.744 51.929 51.646 50.278 ICBI 

RMSE 0.003 0.003 0.003 0.003 0.002 0.003 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 ICBI 

SSIM 0.991 0.994 0.994 0.994 0.996 0.991 0.994 0.989 0.992 0.986 0.984 0.994 0.994 0.994 0.991 ICBI 

DSC03345 

FSIM 0.623 0.663 0.662 0.656 0.668 0.643 0.663 0.622 0.656 0.6 0.604 0.65 0.666 0.643 0.646 ICBI 

PSNR 52.763 54.863 54.987 54.62 57.528 52.863 54.965 50.393 51.359 49.652 49.704 54.556 54.861 54.423 53.05 ICBI 

RMSE 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 ICBI 

SSIM 0.995 0.997 0.997 0.997 0.998 0.995 0.997 0.992 0.994 0.991 0.991 0.997 0.997 0.997 0.995 ICBI 

DSC03366 

FSIM 0.607 0.628 0.63 0.626 0.632 0.61 0.628 0.614 0.638 0.594 0.602 0.618 0.625 0.614 0.614 VDSR_ 
bilinear 

PSNR 57.336 58.682 58.555 58.441 61.157 56.446 58.649 48.275 48.412 48.068 48.153 58.481 58.618 58.434 56.701 ICBI 

RMSE 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.001 ICBI 

SSIM 0.998 0.998 0.998 0.998 0.999 0.997 0.998 0.977 0.978 0.976 0.977 0.998 0.998 0.998 0.998 ICBI 

DSC03376 

FSIM 0.554 0.578 0.577 0.582 0.591 0.538 0.578 0.573 0.591 0.556 0.56 0.568 0.567 0.567 0.563 ICBI 

PSNR 56.783 58.887 58.949 58.871 60.723 56.152 59.031 47.932 48.207 47.64 47.834 58.835 59.103 58.757 57.484 ICBI 

RMSE 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.004 0.004 0.004 0.004 0.001 0.001 0.001 0.001 ICBI 

SSIM 0.998 0.999 0.999 0.999 0.999 0.998 0.999 0.981 0.982 0.98 0.981 0.999 0.999 0.999 0.998 ICBI 
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Table IX-15: IQA metrics of tc100, scale factor 3 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

DSC02725 

FSIM 0.426 0.46 0.458 0.466 
   

0.482 0.485 0.474 0.475 0.427 0.429 0.424 0.426 VDSR_ 
bilinear 

PSNR 56.816 57.304 57.454 57.387 
   

44.127 44.142 44.047 44.091 57.299 57.383 57.229 56.542 ESPCN 

RMSE 0.001 0.001 0.001 0.001 
   

0.006 0.006 0.006 0.006 0.001 0.001 0.001 0.001 ESPCN 

SSIM 0.998 0.998 0.998 0.998 
   

0.92 0.92 0.919 0.919 0.998 0.998 0.998 0.998 ESPCN 

DSC02842 

FSIM 0.546 0.561 0.563 0.556 
   

0.533 0.544 0.52 0.486 0.549 0.552 0.547 0.513 ESPCN 

PSNR 50.443 50.698 50.718 50.634 
   

44.942 45.114 44.7 44.659 50.632 50.826 50.565 49.686 bilinear 

RMSE 0.003 0.003 0.003 0.003 
   

0.006 0.006 0.006 0.006 0.003 0.003 0.003 0.003 bilinear 

SSIM 0.986 0.987 0.987 0.986 
   

0.953 0.954 0.951 0.951 0.987 0.987 0.986 0.985 bilinear 

DSC02861 

FSIM 0.532 0.495 0.506 0.503 
   

0.543 0.52 0.546 0.501 0.527 0.512 0.535 0.51 VDSR_ 
lanczos 

PSNR 50.886 50.879 51.746 51.565 
   

48.404 50.067 47.687 47.777 51.301 51.588 51.207 50.399 ESPCN 

RMSE 0.003 0.003 0.003 0.003 
   

0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 ESPCN 

SSIM 0.991 0.991 0.993 0.993 
   

0.985 0.99 0.982 0.982 0.992 0.993 0.992 0.99 ESPCN 

DSC03071 

FSIM 0.571 0.585 0.592 0.593 
   

0.568 0.581 0.549 0.518 0.574 0.582 0.569 0.533 FSRCNN 

PSNR 54.483 54.989 55.104 55.026 
   

53.032 54.302 52.094 52.083 54.845 55.102 54.748 53.577 ESPCN 

RMSE 0.002 0.002 0.002 0.002 
   

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 ESPCN 

SSIM 0.997 0.997 0.997 0.997 
   

0.995 0.996 0.994 0.994 0.997 0.997 0.997 0.996 ESPCN 

DSC03083 

FSIM 0.504 0.514 0.514 0.517 
   

0.508 0.519 0.503 0.479 0.511 0.511 0.511 0.49 VDSR_ 
bilinear 

PSNR 53.852 54.1 54.277 54.251 
   

49.031 49.421 48.758 48.709 54.139 54.267 54.066 53.235 ESPCN 

RMSE 0.002 0.002 0.002 0.002 
   

0.004 0.003 0.004 0.004 0.002 0.002 0.002 0.002 ESPCN 

SSIM 0.995 0.995 0.995 0.995 
   

0.979 0.98 0.978 0.978 0.995 0.995 0.995 0.994 FSRCNN 

DSC03091 

FSIM 0.544 0.558 0.559 0.569 
   

0.547 0.581 0.521 0.511 0.548 0.554 0.544 0.51 VDSR_ 
bilinear 

PSNR 50.075 50.26 50.559 50.732 
   

47.941 48.724 47.329 46.909 50.653 50.821 50.58 49.083 bilinear 

RMSE 0.003 0.003 0.003 0.003 
   

0.004 0.004 0.004 0.005 0.003 0.003 0.003 0.004 bilinear 

SSIM 0.993 0.993 0.993 0.994 
   

0.986 0.988 0.984 0.983 0.994 0.994 0.993 0.99 bilinear 

DSC03144 

FSIM 0.576 0.59 0.587 0.586 
   

0.555 0.574 0.536 0.498 0.582 0.586 0.576 0.534 EDSR 

PSNR 47.711 48.138 48.361 48.291 
   

45.816 47.29 44.937 44.792 48.084 48.314 47.944 46.753 ESPCN 

RMSE 0.004 0.004 0.004 0.004 
   

0.005 0.004 0.006 0.006 0.004 0.004 0.004 0.005 ESPCN 

SSIM 0.985 0.986 0.987 0.987 
   

0.977 0.984 0.972 0.971 0.986 0.987 0.986 0.981 ESPCN 

DSC03345 

FSIM 0.571 0.597 0.589 0.59 
   

0.557 0.586 0.534 0.514 0.576 0.59 0.569 0.541 EDSR 

PSNR 50.16 50.899 50.799 50.924 
   

48.044 49.132 47.183 47.528 50.789 51.055 50.686 49.522 bilinear 

RMSE 0.003 0.003 0.003 0.003 
   

0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 bilinear 

SSIM 0.991 0.993 0.992 0.993 
   

0.987 0.99 0.984 0.985 0.992 0.993 0.992 0.99 bilinear 

DSC03366 

FSIM 0.55 0.575 0.575 0.577 
   

0.56 0.583 0.533 0.516 0.555 0.566 0.549 0.52 VDSR_ 
bilinear 

PSNR 53.875 54.642 54.649 54.667 
   

47.624 47.818 47.2 47.291 54.513 54.633 54.433 52.916 FSRCNN 

RMSE 0.002 0.002 0.002 0.002 
   

0.004 0.004 0.004 0.004 0.002 0.002 0.002 0.002 FSRCNN 

SSIM 0.995 0.996 0.996 0.996 
   

0.975 0.976 0.973 0.974 0.996 0.996 0.996 0.994 EDSR 

DSC03376 

FSIM 0.488 0.49 0.494 0.506 
   

0.494 0.521 0.489 0.466 0.482 0.489 0.479 0.447 VDSR_ 
bilinear 

PSNR 54.817 55.14 55.041 55.36 
   

47.049 47.687 46.906 47.2 55.263 55.565 55.097 53.979 bilinear 

RMSE 0.002 0.002 0.002 0.002 
   

0.004 0.004 0.005 0.004 0.002 0.002 0.002 0.002 bilinear 

SSIM 0.997 0.997 0.997 0.997 
   

0.978 0.981 0.978 0.979 0.997 0.997 0.997 0.996 bilinear 
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Table IX-16: IQA metrics of tc-100, scale factor 4 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

DSC02725 

FSIM 0.505 0.512 0.513 0.506 0.559 0.467 0.511 0.489 0.506 0.485 0.433 0.505 0.507 0.506 0.384 ICBI 

PSNR 44.409 44.335 44.793 44.733 45.996 43.504 44.747 42.928 44.712 42.698 42.311 44.442 44.948 44.287 43.463 ICBI 

RMSE 0.006 0.006 0.006 0.006 0.005 0.007 0.006 0.007 0.006 0.007 0.008 0.006 0.006 0.006 0.007 ICBI 

SSIM 0.964 0.964 0.967 0.966 0.975 0.953 0.966 0.952 0.966 0.949 0.946 0.964 0.967 0.962 0.957 ICBI 

DSC02842 

FSIM 0.485 0.453 0.475 0.473 0.579 0.481 0.477 0.454 0.489 0.446 0.394 0.488 0.495 0.483 0.403 ICBI 

PSNR 42.811 42.235 43.106 42.965 45.137 42.543 42.996 41.033 43.21 40.96 40.546 42.819 43.485 42.634 41.856 ICBI 

RMSE 0.007 0.008 0.007 0.007 0.006 0.007 0.007 0.009 0.007 0.009 0.009 0.007 0.007 0.007 0.008 ICBI 

SSIM 0.952 0.945 0.955 0.954 0.972 0.949 0.954 0.931 0.956 0.929 0.922 0.952 0.958 0.95 0.941 ICBI 

DSC02861 

FSIM 0.485 0.492 0.488 0.484 0.524 0.457 0.488 0.476 0.478 0.473 0.438 0.488 0.48 0.491 0.375 ICBI 

PSNR 41.651 41.75 42.241 42.129 42.583 40.63 42.157 39.932 41.976 39.813 39.778 41.636 42.22 41.446 40.839 ICBI 

RMSE 0.008 0.008 0.008 0.008 0.007 0.009 0.008 0.01 0.008 0.01 0.01 0.008 0.008 0.008 0.009 ICBI 

SSIM 0.935 0.937 0.943 0.941 0.947 0.918 0.942 0.909 0.939 0.906 0.907 0.935 0.942 0.932 0.925 ICBI 

DSC03071 

FSIM 0.536 0.542 0.539 0.531 0.603 0.481 0.534 0.507 0.544 0.501 0.446 0.538 0.547 0.535 0.417 ICBI 

PSNR 40.264 40.111 40.611 40.513 42.45 38.296 40.451 38.925 40.622 38.962 38.569 40.393 40.819 40.279 39.32 ICBI 

RMSE 0.01 0.01 0.009 0.009 0.008 0.012 0.009 0.011 0.009 0.011 0.012 0.01 0.009 0.01 0.011 ICBI 

SSIM 0.908 0.907 0.914 0.912 0.946 0.852 0.911 0.885 0.914 0.885 0.877 0.91 0.917 0.908 0.892 ICBI 

DSC03083 

FSIM 0.558 0.601 0.574 0.573 0.619 0.51 0.582 0.54 0.56 0.526 0.478 0.554 0.562 0.549 0.424 ICBI 

PSNR 42.537 42.255 42.95 42.809 45.109 40.475 42.976 40.651 42.226 40.445 39.977 42.649 43.107 42.486 41.287 ICBI 

RMSE 0.007 0.008 0.007 0.007 0.006 0.009 0.007 0.009 0.008 0.01 0.01 0.007 0.007 0.008 0.009 ICBI 

SSIM 0.956 0.954 0.959 0.958 0.975 0.926 0.959 0.933 0.947 0.929 0.923 0.956 0.959 0.955 0.944 ICBI 

DSC03091 

FSIM 0.508 0.51 0.508 0.507 0.568 0.459 0.51 0.496 0.502 0.487 0.426 0.51 0.502 0.511 0.374 ICBI 

PSNR 40.447 40.3 41.006 40.822 41.254 39.151 40.971 38.636 40.888 38.691 38.602 40.521 41.154 40.301 39.525 ICBI 

RMSE 0.009 0.01 0.009 0.009 0.009 0.011 0.009 0.012 0.009 0.012 0.012 0.009 0.009 0.01 0.011 ICBI 

SSIM 0.923 0.922 0.93 0.928 0.936 0.893 0.93 0.89 0.927 0.89 0.891 0.924 0.932 0.92 0.909 ICBI 

DSC03144 

FSIM 0.544 0.537 0.538 0.532 0.639 0.516 0.536 0.526 0.543 0.518 0.437 0.546 0.552 0.543 0.434 ICBI 

PSNR 43.811 43.428 43.88 43.703 47.624 42.523 43.753 42.318 43.733 42.176 41.331 43.824 44.35 43.689 42.708 ICBI 

RMSE 0.006 0.007 0.006 0.007 0.004 0.007 0.006 0.008 0.007 0.008 0.009 0.006 0.006 0.007 0.007 ICBI 

SSIM 0.962 0.959 0.963 0.962 0.984 0.95 0.962 0.949 0.962 0.947 0.937 0.962 0.966 0.961 0.953 ICBI 

DSC03345 

FSIM 0.51 0.499 0.495 0.492 0.548 0.472 0.495 0.499 0.503 0.495 0.443 0.511 0.5 0.513 0.379 ICBI 

PSNR 39.724 39.744 40.329 40.121 40.518 38.433 40.23 37.775 40.06 37.824 37.593 39.763 40.386 39.554 38.775 ICBI 

RMSE 0.01 0.01 0.01 0.01 0.009 0.012 0.01 0.013 0.01 0.013 0.013 0.01 0.01 0.011 0.012 ICBI 

SSIM 0.912 0.911 0.921 0.918 0.927 0.887 0.92 0.872 0.917 0.873 0.867 0.913 0.922 0.909 0.894 ICBI 

DSC03366 

FSIM 0.467 0.484 0.471 0.469 0.509 0.431 0.475 0.465 0.47 0.456 0.42 0.463 0.468 0.46 0.4 ICBI 

PSNR 50.045 49.665 50.404 50.338 51.321 49.244 50.358 48.189 49.887 48.278 48.02 50.049 50.557 49.875 49.18 ICBI 

RMSE 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 ICBI 

SSIM 0.991 0.99 0.992 0.992 0.993 0.989 0.992 0.987 0.991 0.987 0.986 0.991 0.992 0.991 0.989 ICBI 

DSC03376 

FSIM 0.454 0.456 0.455 0.444 0.512 0.479 0.458 0.439 0.462 0.432 0.412 0.452 0.46 0.448 0.403 ICBI 

PSNR 42.407 41.657 42.729 42.492 44.838 43.43 42.728 40.91 42.916 40.751 40.623 42.45 43.221 42.24 41.508 ICBI 

RMSE 0.008 0.008 0.007 0.008 0.006 0.007 0.007 0.009 0.007 0.009 0.009 0.008 0.007 0.008 0.008 ICBI 

SSIM 0.956 0.947 0.958 0.957 0.974 0.965 0.958 0.941 0.96 0.938 0.938 0.957 0.962 0.955 0.948 ICBI 
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Table IX-17: IQA metrics of tc-100, scale factor 8 

image_name iqa DRCN EDSR ESPCN FSRCNN ICBI INEDI LapSRN VDSR_bicubic VDSR_bilinear VDSR_lanczos VDSR_nearest bicubic bilinear lanczos nearest best 

DSC02725 

FSIM 
    

0.457 0.379 
 

0.404 0.409 0.4 0.349 0.405 0.409 0.401 0.273 ICBI 

PSNR 
    

43.737 40.649 
 

41.745 42.374 41.591 40.487 41.907 42.467 41.751 40.899 ICBI 

RMSE 
    

0.007 0.009 
 

0.008 0.008 0.008 0.009 0.008 0.008 0.008 0.009 ICBI 

SSIM 
    

0.956 0.911 
 

0.931 0.939 0.928 0.914 0.932 0.94 0.93 0.92 ICBI 

DSC02842 

FSIM 
    

0.457 0.388 
 

0.383 0.385 0.378 0.335 0.384 0.387 0.379 0.304 ICBI 

PSNR 
    

42.552 39.673 
 

39.975 40.688 39.802 38.823 40.062 40.761 39.884 39.2 ICBI 

RMSE 
    

0.007 0.01 
 

0.01 0.009 0.01 0.011 0.01 0.009 0.01 0.011 ICBI 

SSIM 
    

0.95 0.91 
 

0.917 0.929 0.914 0.894 0.919 0.93 0.916 0.902 ICBI 

DSC02861 

FSIM 
    

0.412 0.383 
 

0.384 0.385 0.379 0.338 0.385 0.385 0.38 0.258 ICBI 

PSNR 
    

40.598 38.7 
 

39.54 40.199 39.354 38.495 39.671 40.303 39.483 38.851 ICBI 

RMSE 
    

0.009 0.012 
 

0.011 0.01 0.011 0.012 0.01 0.01 0.011 0.011 ICBI 

SSIM 
    

0.915 0.875 
 

0.894 0.909 0.89 0.875 0.899 0.912 0.895 0.885 ICBI 

DSC03071 

FSIM 
    

0.455 0.38 
 

0.405 0.409 0.401 0.354 0.409 0.411 0.405 0.286 ICBI 

PSNR 
    

38.848 36.446 
 

37.472 37.994 37.381 36.498 37.525 38.027 37.426 36.609 ICBI 

RMSE 
    

0.011 0.015 
 

0.013 0.013 0.014 0.015 0.013 0.013 0.013 0.015 ICBI 

SSIM 
    

0.868 0.779 
 

0.824 0.841 0.821 0.796 0.827 0.843 0.824 0.8 ICBI 

DSC03083 

FSIM 
    

0.505 0.391 
 

0.441 0.442 0.438 0.383 0.443 0.445 0.439 0.305 ICBI 

PSNR 
    

41.048 38.173 
 

39.205 39.732 39.038 38.006 39.536 40.09 39.36 38.452 ICBI 

RMSE 
    

0.009 0.012 
 

0.011 0.01 0.011 0.013 0.011 0.01 0.011 0.012 ICBI 

SSIM 
    

0.937 0.877 
 

0.907 0.911 0.903 0.885 0.915 0.921 0.912 0.899 ICBI 

DSC03091 

FSIM 
    

0.428 0.367 
 

0.389 0.391 0.385 0.342 0.392 0.393 0.388 0.261 ICBI 

PSNR 
    

39.501 37.498 
 

38.778 39.434 38.583 37.66 38.849 39.496 38.651 37.918 ICBI 

RMSE 
    

0.011 0.013 
 

0.012 0.011 0.012 0.013 0.011 0.011 0.012 0.013 ICBI 

SSIM 
    

0.905 0.847 
 

0.888 0.901 0.883 0.863 0.892 0.903 0.887 0.872 ICBI 

DSC03144 

FSIM 
    

0.502 0.406 
 

0.419 0.414 0.415 0.348 0.423 0.419 0.419 0.301 ICBI 

PSNR 
    

43.096 39.045 
 

39.911 40.502 39.76 38.82 40.045 40.678 39.881 39.123 ICBI 

RMSE 
    

0.007 0.011 
 

0.01 0.009 0.01 0.011 0.01 0.009 0.01 0.011 ICBI 

SSIM 
    

0.955 0.901 
 

0.915 0.925 0.912 0.896 0.918 0.928 0.915 0.903 ICBI 

DSC03345 

FSIM 
    

0.402 0.378 
 

0.373 0.373 0.369 0.355 0.374 0.372 0.37 0.262 ICBI 

PSNR 
    

38.372 37.016 
 

37.7 38.445 37.485 36.613 37.896 38.589 37.683 37.085 bilinear 

RMSE 
    

0.012 0.014 
 

0.013 0.012 0.013 0.015 0.013 0.012 0.013 0.014 bilinear 

SSIM 
    

0.891 0.861 
 

0.875 0.89 0.869 0.844 0.879 0.893 0.874 0.858 bilinear 

DSC03366 

FSIM 
    

0.438 0.384 
 

0.398 0.395 0.398 0.343 0.401 0.401 0.399 0.311 ICBI 

PSNR 
    

48.983 47.288 
 

47.382 47.88 47.242 46.558 47.696 48.236 47.539 46.989 ICBI 

RMSE 
    

0.004 0.004 
 

0.004 0.004 0.004 0.005 0.004 0.004 0.004 0.004 ICBI 

SSIM 
    

0.99 0.985 
 

0.986 0.987 0.985 0.982 0.986 0.988 0.986 0.984 ICBI 

DSC03376 

FSIM 
    

0.435 0.394 
 

0.371 0.374 0.372 0.327 0.375 0.377 0.375 0.294 ICBI 

PSNR 
    

42.714 41.227 
 

40.472 41.356 40.252 39.431 40.628 41.443 40.396 39.756 ICBI 

RMSE 
    

0.007 0.009 
 

0.009 0.009 0.01 0.011 0.009 0.008 0.01 0.01 ICBI 

SSIM 
    

0.962 0.949 
 

0.942 0.95 0.939 0.927 0.943 0.95 0.941 0.932 ICBI 

 


